Crystallinity changes and mechanical properties of syndiotactic 1,2-polybutadiene under plastic deformation

A. Khamidullin, Y. Lebedev, R. Kinzyabulatov, D. Gunderov show affiliations and emails
Received 02 December 2016; Accepted 06 March 2017;
This paper is written in Russian
Citation: A. Khamidullin, Y. Lebedev, R. Kinzyabulatov, D. Gunderov. Crystallinity changes and mechanical properties of syndiotactic 1,2-polybutadiene under plastic deformation. Lett. Mater., 2017, 7(2) 125-129


In the present paper the influence of uniaxial tension and severe plastic deformation (SPD) on the structure and physico-mechanical properties of syndiotactic 1,2-polybutadiene (SPB), a polymer having thermoplastic properties, have been studied. Test specimens were prepared from commercial grade RB830 polymer (JSR Corp., Japan) with a weight-averaged molecular mass of 1.2∙105 g/mol, the degree of crystallinity of 29% and syndiotactic content of 85-90%. Using X-ray diffractometry and differential scanning calorimetry (DSC) it has been found that in conditions of simple uniaxial tension the crystallinity of SPB at small, less than 250%, elongations increases slightly from 32% to 37%. With further tension, the sample does not change practically the degree of crystallinity. At deformations of 600 to 650% the SPB samples lose their transparency and attain a milky-white color that presumably is due to the formation of a new structural state called «milk phase» (mph) in the polymer under deformation. This structural transition does not have any influence on further deformation modes and the resulting structure and color of the sample are maintained after the stress release. When using the technique of severe plastic deformation by means of torsion straining under high pressure on Bridgman anvils, SPB samples also attain a milky color, but become fully amorphous. They undergo a completely lose of elasticity, sharply decrease of density and become brittle. The nature of this difference when using two deformation techniques is discussed. During uniaxial tension, the change of polymer properties occurs due to the reorientation of macromolecules, while SPD apparently results in the rupture of carbon-carbon bonds.

References (19)

1. / jsr_e / pd / tpe_rb.shtml.
2. Y. Obata, C. Tosaki, M. Ikeyama Polymer J. 7, 207 (1975).
3. Y. Obata, C. Homma, C. Tosaki, N. Shiraishi Polymer J., 7, 217 (1975).
4. Y. Chen, D. Yang, Y. Hu, X. Zhang Cryst. Growth and Design. 4, 117 (2004).
5. B. Wunderlich Macromolecular Physics: Crystal structure, morphology, defects. N. Y. Academic Press, 1973, 592 p. [Б. Вундерлих Физика макромолекул. Кристаллическая структура, морофология, дефекты. М.: Мир, 1976. 574 с.].
6. A. Galeski; A. S. Argon, R. E. Cohen, Macromolecules 24, 3953 (1991).
7. L. Lin, A. S. Argon J. Mater. Sci. 29, 294 (1994).
8. R. Seguela Polymer Rev., 45 (3), 263 (2005).
9. R. Z. Valiev, I. V. Alexandrov Bulk nanostractured materials: production, structure and properties M.: Academkniga, 2007, 398 p. (in Russian) [Р. З. Валиев, И. В. Александров. Объемные наноструктурные материалы: получение, структура и свойства. М.: ИКЦ «Академкнига», 2007. 398с.].
10. Z. S. Mo, H. F. Zhang Polym. Rev., 35, 555 (1995).
11. A. N. Chuvyrov, R. R. Kinzyabulatov, Yu. A. Lebedev, A. B. Glazyrin, R. K. Teregulov Deformation and fracture of materials № 9, 29 (2009) (in Russian) [Чувыров А. Н., Кинзябулатов Р. Р., Лебедев Ю. А., Глазырин А. Б., Терегулов Р. К. Деформация и разрушение материалов, № 9, 29 (2009)].
12. A. N. Chuvyrov, R. R. Kinzyabulatov, Yu. A. Lebedev Doklady Chemistry, 437 (2), 124 [А. Н. Чувыров, Р. Р. Кинзябулатов, Ю. А. Лебедев Доклады РАН, 437, 659 (2011)].
13. G. Natta, P. Corradini J. Polymer Sci. 20, 251 (1956).
14. A. R. Khamidullin, A. N. Chuvyrov, Yu. A. Lebedev, V. D. Sitdikov Moscow Univ. Phys. Bull., 68, 225 (2013) [А. Р. Хамидуллин, А. Н. Чувыров, Ю. А. Лебедев, В. Д. Ситдиков, Вестник МГУ. Сер.3 Физика, астрономия, № 3, 47 (2013)].
15. V. A. Bernshtain, V. M. Egorov Differential scanning calorimetry in physico-chemistry of polymers (in russian) L.: Khimiya, 1990, 256 c. [В. А. Бернштейн, В. М. Егоров Дифференциальная сканирующая калориметрия в физикохимии полимеров. Л.: Химия, 1990. 256 с.].
16. M. Ren, Q. Chen, J. Song, H. L. Zhang, X. Sun, J. Polymer Science: B: Polym. Phys. 43, 553 (2005).
17. R. Napolitano, B. Pirozzi, S. Esposito Macromol. Chem. Phys. 207, 503 (2006).
18. Lima M. F. S., Vasconcellos M. A. Z., Samios D. J. Polym. Sci. B: Polym. Phys., 40, 896 (2002).
19. F. Auriemma C. De Rosa, P. Corradini Adv. Polym.Sci. 181, 1 (2005).

Similar papers