Features of the structure and phase composition of materials based on aluminum oxide and chromium borides obtained under conditions of SHS and free SHS compression

A.P. Chizhikov ORCID logo , P.M. Bazhin, A.M. Stolin show affiliations and emails
Received: 09 December 2019; Revised: 13 January 2020; Accepted: 24 January 2020
This paper is written in Russian
Citation: A.P. Chizhikov, P.M. Bazhin, A.M. Stolin. Features of the structure and phase composition of materials based on aluminum oxide and chromium borides obtained under conditions of SHS and free SHS compression. Lett. Mater., 2020, 10(2) 135-140
BibTex   https://doi.org/10.22226/2410-3535-2020-2-135-140


This work is devoted to the study of the structural and phase composition of materials based on aluminum oxide and chromium borides obtained under SHS conditions without external force and under conditions of free SHS compression, which combines the SHS process and high-temperature shear deformation.In the present work, ceramic materials based on aluminum oxide and chromium borides in the Cr2O3-Al-B system with different ratios of the starting components, from stoichiometric to excess free boron, are obtained by self-propagating high-temperature synthesis (SHS) method. Excess boron was introduced into the system in order to compensate for its loss due to burnout during SHS. It was shown that, as a result of SHS, a ceramic composite material with an Al2O3 matrix filled with various chromium borides: CrB, CrB2, and Cr3B4 is formed in the studied system. It was also shown that in the 2Cr2O3-2Al-7B system, the formation of metastable phase of aluminum borate AlBO3 is possible as a result of SHS. Since AlBO3 is a promising material for use in refractories, this system was chosen as the starting material for producing plates by the free SHS compression method. The free SHS compression method combines the synthesis of material in SHS mode with subsequent shear high-temperature deformation. The specified method allowed obtaining ceramic plates with dimensions of 50 × 40 × 7 mm. According to the results of XRD and SEM, the obtained plates consisted of two phases: Al2O3, CrB2, as well as free boron. Due to changes in the conditions of heat removal under free SHS compression and a decrease in the residence time of the synthesized material at elevated temperatures, the formation of chromium monoboride and aluminum borate does not occur. Since the formation of aluminum borates begins in the temperature range 900 – 950°С, an additional heat treatment of the obtained samples was carried out at a temperature of 950°С for 20 hours. It was found that as a result of heat treatment due to the interaction of free boron and aluminum oxide, the formation of aluminum borate Al4B2O9 occurs, as well as the formation of chromium monoboride takes place as a result of thermal decomposition of CrB2. By this method, ceramic plates with dimensions of 50 × 40 × 7 mm were obtained. The maximum density of the obtained plates was 3.98 g/cm3, while the porosity was about 15%.

References (26)

1. R. Sarkar, H. Y. Sohn. Metall Mater. Trans. B. 49 (4), 1860 (2018). Crossref
2. A. M. Abyzov. Refract. Ind. Ceram. 60 (2), 9 (2019). Crossref
3. G. Y. Wu et al. J. Alloy Compd. 796, 131 (2019). Crossref
4. V. V. Slovikovskii, A. V. Gulyaeva. Refract. Ind. Ceram. 58 (5), 475 (2018). Crossref
5. Y. L. Kats, M. V. Krasnyanskii, D. I. Yusupov, A. S. Tyuftyaev, M. K. Gadzhiev, M. A. Khromov. Metallurgist. 63 (3-4), 228 (2019). Crossref
6. J. F. Chen, L. G. Chen, Y. W. Wei, N. Li, S. W. Zhang. Corros. Sci. 143, 166 (2018). Crossref
7. A. M. Hassan, H. Moselhy, M. F. Abadir. Int. J. Appl. Ceram. Tec. 16 (1), 418 (2019). Crossref
8. C. Detellier. Chem. Rec. 18 (7-8), 868 (2018). Crossref
9. D. X. Pan, H. Z. Zhao, H. Zhang, P. D. Zhao, Y. C. Li, Q. F. Zou. Ceram. Int. 45 (15), 18215 (2019). Crossref
10. Y. J. Wu, S. Q. Song, Z. L. Xue, M. Nath. Metall Mater. Trans. B. 50 (2), 808 (2019). Crossref
11. W. L. Wang, L. W. Xue, T. S. Zhang, L. J. Zhou, J. Y. Chen, Z. H. Pan. Ceram. Int. 45 (16), 20664 (2019). Crossref
12. M. A. Zalapa-Garibay, A. Arizmendi-Moraquecho, S. Y. Reyes-Lopez. J. Ceram. Sci. Technol. 10 (1), 9 (2019). Crossref
13. M. S. Varfolomeev, G. I. Shcherbakova. Refract. Ind. Ceram. 59 (3), 290 (2018). Crossref
14. M. F. Hernandez, G. Suarez, M. Cipollone, M. S. Conconi, E. F. Aglietti, N. M. Rendtorff. Ceram. Int. 43 (2), 2188 (2017). Crossref
15. E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, D. V. Shtansky. Int. Mater. Rev. 62 (4), 203 (2017). Crossref
16. S. Vorotilo, A. Y. Potanin, I. V. Iatsyuk, E. A. Levashov. Adv. Eng. Mater. 20 (8), 15 (2018). Crossref
17. G. H. Liu, J. T. Li, K. X. Chen. Int. J. Refract. Met. H. 39, 90 (2013). Crossref
18. K. Moritz, N. Gerlach, J. Hubalkova, C. G. Aneziris. Int. J. Appl. Ceram. Tec. 16 (1), 14 (2019). Crossref
19. S. Schaffoner, L. Freitag, J. Hubalkova, C. G. Aneziris. J. Eur. Ceram. Soc. 36 (8), 2109 (2016). Crossref
20. T. F. Krenzel, J. Schreuer, D. Laubner, M. Cichocki, H. Schneider. J. Am. Ceram. Soc. 102 (1), 416 (2019). Crossref
21. M. Nath, P. Kumar, S. Q. Song, Y. W. Li, H. S. Tripathi. Ceram. Int. 45 (9), 12411 (2019). Crossref
22. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, M. I. Alymov. Dokl. Chem. 480, 136 (2018). Crossref
23. A. Pazniak et al. Ceram. Int. 45 (2), 2020 (2019). Crossref
24. Y. Nagao, T. Hamada, A. Imamura, S. Hinokuma, Y. Nakahara, M. Machida. Catal. Sci. Technol. 6 (14), 5464 (2016). Crossref
25. K. Hoffmann et al. J. Solid State Chem. 247, 173 (2017). Crossref
26. S. A. Decterov, V. Swamy, I. H. Jung. Int. J. Mater. Res. 98 (10), 987 (2007). Crossref

Similar papers