Synthesis and dielectric properties, XPS spectroscopy study of high-entropy pyrochlore

K.N. Parshukova ORCID logo , N.A. Sekushin, B.A. Makeev ORCID logo , M.G. Krzhizhanovskaya ORCID logo , A.V. Koroleva, N.A. Zhuk show affiliations and emails
Received 31 August 2022; Accepted 07 November 2022;
Citation: K.N. Parshukova, N.A. Sekushin, B.A. Makeev, M.G. Krzhizhanovskaya, A.V. Koroleva, N.A. Zhuk. Synthesis and dielectric properties, XPS spectroscopy study of high-entropy pyrochlore. Lett. Mater., 2022, 12(4s) 469-474


At room temperature the permittivity and dielectric loss tangent of Bi2-1/3Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ are ~46 and ~0.004 at 1 MHz, respectively.It was established by XRD, that ceramics of the nominal composition Bi2Cr1 / 6Mn1 / 6Fe1 / 6Co1 / 6Ni1 / 6Cu1 / 6Ta2O9+Δ, regardless of the synthesis conditions, contained trace amounts of bismuth orthotantalate impurity. The phase-clean sample was obtained with a deficiency of bismuth atoms in the Bi2−хCr1 / 6Mn1 / 6Fe1 / 6Co1 / 6Ni1 / 6Cu1 / 6Ta2O9+Δ bismuth sublattice. The complex oxide crystallizes in the pyrochlore structural type (sp. gr. Fd-3m, а =10.4811(2) Å). Ceramics is characterized by a porous, loose microstructure with an average grain size of 0.5 –1 μm. According to the XPS data, the transition element ions in pyrochlore are predominantly in the Cr (III), Fe (III), Mn (II), Co (II), Ni (II), Cu (II) states. At room temperature, the permittivity and dielectric loss tangent of Bi2−1 / 3Cr1 / 6Mn1 / 6Fe1 / 6Co1 / 6Ni1 / 6Cu1 / 6Ta2O9+Δ are ≈46 and ≈0.004 at 1 MHz, respectively. An equivalent circuit is proposed that simulates the electrical properties of the sample.

References (31)

1. S. Murugesan, M. N. Huda, Y. Yan, M. M. Al-Jassim, V. Subramanian. J. Phys. Chem. 114, 10598 (2010). Crossref
2. C. C. Khaw, K. B. Tan, C. K. Lee. Ceram. Intern. 35, 1473 (2009). Crossref
3. G. Giampaoli, T. Siritanon, B. Day, J. Li, M. A. Subramanian. Prog. Solid State Chem. 50, 16 (2018). Crossref
4. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, S. V. Nekipelov, V. V. Kharton, N. A. Sekushin. Inorgan. Chem. 60, 4924 (2021). Crossref
5. M. P. Chon, K. B. Tan, C. C. Khaw, Z. Zainal, Y. H. Taufiq-Yap, S. K. Chen, P. Y. Tan. J. Alloys Comp. 675, 116 (2016). Crossref
6. N. A. Zhuk, M. G. Krzhizhanovskaya. Ceram. Int. 47, 30099 (2021). Crossref
7. F. A. Jusoh, K. B. Tan, Z. Zainal, S. K. Chen, C. C. Khaw, O. J. Lee. J. Mater. Res. Techn. 9, 11022 (2020). Crossref
8. P. Y. Tan, K. B. Tan, C. Khaw, Z. Zainal, S. K. Chen, M. P. Chon. Ceram. Intern. 38, 5401 (2021). Crossref
9. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, N. A. Sekushin, S. V. Nekipelov, V. V. Kharton, B. A. Makeev, V. P. Lutoev, Y. D. Sennikova. Inorg. Chem. 61, 4270 (2022). Crossref
10. N. A. Zhuk, N. А. Sekushin, M. G. Krzhizhanovskaya, V. V. Kharton. Sol. St. Ion. 377, 115868 (2022). Crossref
11. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983). Crossref
12. A. S. Rogachev. Physics of metals and metallology. 121, 807 (2020). Crossref
13. C. C. Khaw, K. B. Tan, C. K. Lee, A. R. West. J. Eur. Ceram. Soc. 32, 671 (2012). Crossref
14. G. Karthick, L. Raman, B. S. Murty. J. Mater. Sci. Technol. 82, 214 (2021). Crossref
15. H. Yang, G. Lin, H. Bu, H. Liu, L. Yang, W. Wang, X. Lin, C. Fu, Y. Wang, C. Zeng. Ceram. Int. 48, 6956 (2022). Crossref
16. D. Liu, Y. Wang, F. Zhou, B. Xu, B. Lv. Ceram. Int. 47, 29960 (2021). Crossref
17. D. A. Vinnik, E. A. Trofimov, V. E. Zhivulin, O. V. Zaitseva, S. A. Gudkova, A. Yu. Starikov, D. A. Zherebtsov, A. A. Kirsanova, M. Häßner, R. Niewa. Ceram. Intern. 45, 12942 (2019). Crossref
18. Bruker AXS. Topas 5.0. General profile and structure analysis software for powder diffraction data. Karlsruhe, Germany. 2014.
19. R. D. Shannon. Acta Crystallogr. A. 32, 751 (1976). Crossref
20. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, V. V. Kharton, A. I. Chichineva. Chem. Mater. 32, 5493 (2020). Crossref
21. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stöhr, R. L. White. Phys. Rev. 64, 214422 (2001). Crossref
22. R. Grissa, H. Martinez, S. Cotte, J. Galipaud, B. Pecquenard, F. L. Cras. Applied Surface Science. 411, 449 (2017). Crossref
23. M. A. Stranick. Mn2O3 by XPS. Surface Science Spectra. 6, 39 (1999). Crossref
24. F. Gri, L. Bigiani, A. Gasparotto, C. Maccato, D. Barreca. Surface Science Spectra. 25, 024004 (2018). Crossref
25. J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation (1992) 261 p.
26. M. Hassel, H.-J. Freund. Surface Science Spectra. 4, 273 (1996). Crossref
27. D. D. Sarma, C. N. R. Rao. J. Electron Spectrosc. Relat. Phenom. 20, 25 (1980). Crossref
28. H. A. Bullen, S. J. Garrett. Single Crystal Surfaces. Surface Science Spectra. 8, 225 (2001). Crossref
29. S.-Y. Jeong, J.-B. Lee, H. Na, T.-Y. Seong. Thin Solid Films. 518, 4813 (2010). Crossref
30. D. Barreca, A. Gasparotto, E. Tondello. Surface Science Spectra. 14, 41 (2007). Crossref
31. N. A. Zhuk, N. A. Sekushin, V. G. Semenov, A. V. Fedorova, A. A. Selyutin, M. G. Krzhizhanovskaya, V. P. Lutoev, B. A. Makeev, V. V. Kharton, D. N. Sivkov, A. D. Shpynova. J. Alloys Comps. 903, 163928 (2022). Crossref

Similar papers