Computer simulation of a composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu, Co, Ni, Fe

I.V. Zaporotskova, D.P. Radchenko, L.V. Kozhitov, S.V. Boroznin, N.P. Boroznina show affiliations and emails
Received 13 November 2020; Accepted 21 January 2021;
Citation: I.V. Zaporotskova, D.P. Radchenko, L.V. Kozhitov, S.V. Boroznin, N.P. Boroznina. Computer simulation of a composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu, Co, Ni, Fe. Lett. Mater., 2021, 11(2) 146-151
BibTex   https://doi.org/10.22226/2410-3535-2021-2-146-151

Abstract

In this work, models of a monolayer of pyrolyzed polyacrylonitrile containing pairs of metal atoms have been created. A complete optimization of the cluster geometry was carried out using the DFT method.In this work, models of a single layer of pyrolyzed polyacrylonitrile (PPAN) containing couples of Cu-Co, Cu-Ni, Ni-Co, Ni-Fe atoms have been created. The models are PPAN clusters. A complete optimization of the models was carried out using the density functional method DFT with the B3LYP functional and the cc-pvdz basis. The atom couples under study were located in the center of the cluster. The geometric structure of the models of composite systems was investigated. A significant curvature of the simulated structures was found. The single-electron spectra of the clusters were presented graphically, and it was shown that the atomic orbitals of the metals make the main contributions to the conductivity band. The band gap is analyzed and compared with a similar characteristic of PPAN without metal atoms. It was found that the cobalt atom insignificantly affects the change in the band gap, in contrast to nickel, the introduction of which significantly reduces it. In turn, couples of Cu-Co, Cu-Ni atoms make a greater contribution to the formation of levels of atomic orbitals in the conduction band of the system. Among the models studied, the smallest band gap corresponds to the PPAN system with a couple of Ni-Fe atoms. The energy calculation showed the presence of stable chemical bonds in the systems. The charges of metals were determined using the atomic polar charge tensor. Charge transfer from metal atoms to single layer atoms was found, which is the evidence of the formation of a chemical bond between the studied metals and the single layer.

References (30)

1. L. Y. Zhu, X. J. Zeng, M. Chen, R. H. Yu. RSC Adv. 7, 26801 (2017). Crossref
2. Y. J. Li, R. Wang, F. M. Qi, C. M. Wang. Appl. Surf. Sci. 254, 4708 (2008). Crossref
3. J. W. Liu, R. C. Che, H. J. Chen, F. Zhang, F. Xia, Q. S. Wu, M. Wang. Small. 8, 1214 (2012). Crossref
4. M. S. Cao, X. L. Shi, X. Y. Fang, H. B. Jin, Z. L. Hou, W. Zhou. Appl. Phys. Lett. 91, 203110 (2007). Crossref
5. X. G. Liu. Journal of Physics D: Applied Physics. 42, 1 (2009). Crossref
6. C. Zhang, B. C. Wang, J. Y. Xiang, C. Su, C. P. Mu, F. S. Wen, Z. Y. Liu. ACS Appl. Mater. Interfaces. 9, 28868 (2017). Crossref
7. M. V. Shuba, A. V. Melnikov, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko. Phys. Rev. B. 88, 045436 (2013). Crossref
8. O. Khani, M. Z. Shoushtari, M. Jazirehpour, M. H. Shams. Ceramics International. 42 (13), 14548 (2016). Crossref
9. C. Li, J. Sui, Z. Zhang, X. Jiang, Z. Zhang, L. Yu. Chemical Engineering Journal. 375, 122017 (2019). Crossref
10. L. V. Kozhitov, V. V. Kozlov, A. V. Kostikova, A. V. Popkova. Russian Microelectronics. 42, 498 (2013). Crossref
11. A. I. Gusev. Nanomaterials, nanostructures and nanotechnologies. Moscow, Phizmatlit (2009) 414 p. (in Russian) [А. И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Москва, Физматлит (2009) 414 c.].
12. E. Roduner. Nanoscopic Materials: Size-Dependent Phenomena. Cambridge, UK, RSCPublishing (2014) 286 р.
13. J. Xu, X. Han, H. Liu, Y. Hu. Colloids Surf. A. 273, 179 (2006). Crossref
14. R. Zana. Adv. Colloid Interface Sci. 97, 205 (2002). Crossref
15. A. D. Pomogailo, A. S. Rosenberg, I. E. Ufliand. Nanoparticles of metals in polymers. Moscow, Chemistry (2000) 672 p. (in Russian) [А. Д. Помогайло, А. С. Розенберг, И. Е. Уфлянд. Наночастицы металлов в полимерах. Москва, Химия (2000) 672 с.].
16. A. D. Pomogailo. Ros. Chem. J. 5, 64 (2002). (in Russian) [А. Д. Помогайло. Рос. хим. ж. 5, 64 (2002).].
17. V. A. Bogatirev, L. A. Dykman, N. G. Hlebtsov. Methods of synthesis of nanoparticles with plasma resonance. Manual. Saratov, Saratov State University (2009) 35 p. (in Russian) [В. А. Богатырев, Л. А. Дыкман, Н. Г. Хлебцов. Методы синтеза наночастиц с плазменным резонансом. Пособие. Саратов, изд-во Саратовского гос. ун-та (2009) 35 с.].
18. C. Rao, A. Müller, A. K. Cheetham. The chemistry of nanomaterials. Weinheim, Wiley-VCH Verlag GmbH & Co. K Ga A. (2004) 741 p. Crossref
19. T. Sato. Stabilization of Colloidal Dispersions by Polymeric Adsorption. New York, Marcell Dekker (1980) 357 p.
20. H. Khayyam, R. N. Jazar, S. Nunna, G. Golkarnarenji, K. Badii, S. M. Fakhrhoseini, S. Kumar, M. Naebe. Progress in Materials Science. 107, 100575 (2020). Crossref
21. D. G. Muratov, E. V. Yakushko, L. V. Koshitov, A. V. Popkova, M. A. Pushkarev. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki. 1, 61 (2013). (in Russian) [Д. Г. Муратов, Е. В. Якушко, Л. В. Кожитов, А. В. Попкова, М. А. Пушкарев. Известия высших учебных заведений. Материалы электронной техники. 1, 61 (2013).]. Crossref
22. I. V. Zaporotskova, L. V. Kozhitov, N. A. Anikeev, O. A. Davletova, D. G. Muratov, A. V. Popkova, E. V. Yakushko. Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki. 66, 134 (2014). (in Russian) [И. В. Запороцкова, Л. В. Кожитов, Н. А. Аникеев, О. А. Давлетова, Д. Г. Муратов, А. В. Попкова, Е. В. Якушко. Известия высших учебных заведений. Материалы электронной техники. 66, 134 (2014).]. Crossref
23. K. A. Bagdasarova, L. M. Zemtsov, G. P. Karpacheva, N. S. Perov, A. V. Maksimochkina, E. L. Dzidziguri, E. N. Sidorova. Solid State Physic. 50, 718 (2008). (in Russian) [К. А. Багдасарова, Л. М. Земцов, Г. П. Карпачева, Н. С. Перов, А. В. Максимочкина, Э. Л. Дзидзигури, Е. Н. Сидорова. Физика твердого тела. 50, 718 (2008).]. Crossref
24. D. G. Muratov, L. V. Kozhitov, I. V. Zaporotskova, V. S. Sonkin, N. P. Boroznina A. V. Popkova, S. V. Boroznin A. V. Shadrinov. Synthesis and properties of nanoparticles, alloys and composite nanomaterials based on transition metals. Volgograd, Izd. VolSU (2017) 650 p. (in Russian) [Д. Г. Муратов, Л. В. Кожитов, И. В. Запороцкова, В. С. Сонькин, Н. П. Борознина, А. В. Подкова, С. В. Борознин, А. В. Шадринов. Синтез и свойства наночастиц, сплавов и композиционных наноматериалов на основе переходных металлов. Волгоград, Изд-во ВолГУ (2017) 650 с.].
25. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, G. Yu. Yurkov. Russ. Chem. Rev. 74 (6), 489 (2005). Crossref
26. V. V. Kozlov, G. P. Karpacheva, V. S. Petrov, E. V. Lazovskaya. High molecular weight compounds. Serie A. 43, 23 (2001). (in Russian) [В. В. Козлов, Г. П. Карпачева, В. С. Петров, Е. В. Лазовская. Высокомолекулярные соединения. Серия А. 43, 23 (2001).].
27. T. F. Marinca, I. Chicinaş, O. Isnard, V. Pop, F. Popa. Journal of Alloys and Compounds. 509, 7931 (2011). Crossref
28. R. van Eldik, J. Harvey. Theoretical and computational inorganic chemistry. London, Academic Press (2010) 536 р.
29. W. Koch, M. Holthausen. A Chemist's Guide to Density Functional Theory. Weinheim, Wiley-VCH, Germany (2002) 306 p. Crossref
30. O. A. Kakorina, I. V. Zaporotskova, L. V. Kozhitov, A. V. Popkova. Journal of Physics: Conference Series. 1281, 012031 (2019). Crossref

Similar papers

Funding

1. Ministry of Education and Science of the Russian Federation - Russian President's grant № 798.2019.1
2. Ministry of Education and Science of the Russian Federation - Russian President's grant № MK-1758.2020.8