Mechanical properties and weldability of powder EP741NP nickel-based superalloy with an ultrafine-grained mixed type microstructure

E.V. Galieva, V.A. Valitov, E.Y. Klassman, A.A. Ganeev ORCID logo , R.R. Gabbasov, E.M. Stepukhov, I.I. Khafizov show affiliations and emails
Received: 26 October 2023; Revised: 27 November 2023; Accepted: 29 November 2023
Citation: E.V. Galieva, V.A. Valitov, E.Y. Klassman, A.A. Ganeev, R.R. Gabbasov, E.M. Stepukhov, I.I. Khafizov. Mechanical properties and weldability of powder EP741NP nickel-based superalloy with an ultrafine-grained mixed type microstructure. Lett. Mater., 2023, 13(4s) 493-498
BibTex   https://doi.org/10.22226/2410-3535-2023-4-493-498

Abstract

The powder EP741NP superalloy with the initial ultrafine-grained microstructure after superplastic deformation and a solid-state joint in combination of the EP741NP superalloy and a cast intermetallic VKNA-25 alloy.This work was devoted to a study of microstructural changes and mechanical properties of the EP741NP superalloy with an ultrafine-grained (UFG) mixed-type microstructure. The deformation of samples with an UFG microstructure was carried out according to the uniaxial compression scheme in a wide temperature range of 750 –1125°C and strain rates of 5 ·10−4 –10−2 s−1. It has been established that the UFG microstructure is stable up to a temperature of 900°C. A temperature increase up to 1000 –1125°C led to the transformation of a UFG mixed-type microstructure into a fine-grained microduplex-type microstructure. It was also shown that a solid-state joint of intermetallic single-crystal VKNA-25 alloy with powder EP741NP superalloy could be obtained by pressure welding under temperature-strain conditions of superplasticity for the EP741NP superalloy. It was found that during pressure welding a transition diffusion zone was formed, the width of which was equal to 10 μm.

References (30)

1. R. C. Reed. The superalloys: Fundamentals and Applications. Cambridge University Press (2006) 372 p. Crossref
2. E. Bassini, V. Vola, M. Lorusso, R. Ghisleni, M. Lombardi, S. Biamino, D. Uguesb, G. Vallillo, B. Picqué. Materials Science and Engineering: A. 695, 55 (2017). Crossref
3. J. C. Najmon, S. Raeisi, A. Tovar. Review of additive manufacturing technologies and applications in the aerospace industry. In: Additive Manufacturing for the Aerospace Industry. Elsevier (2019) pp. 7 - 31. Crossref
4. A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya. Journal of Manufacturing Systems. 53, 124 (2019). Crossref
5. G. S. Garibov. Light alloys technology. 4, 24 (2018). (in Russian) [Г. С. Гарибов. Технология легких сплавов. 4, 24 (2018).].
6. A. V. Logunov. Heat-resistant nickel alloys for blades and disks of gas turbines. Moscow, LLC Publishing House Gas Turbine Technologies (2017) 854 p. (in Russian) [А. В. Логунов. Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин. Москва, ООО «Издательский дом «Газотурбинные технологии» (2017) 854 с.].
7. B. S. Lomberg, S. V. Ovsepyan, M. M. Bakgradze, M. N. Letnikov, I. S. Mazlov. Aviation materials. S, 116 (2017). (in Russian) [Б. С. Ломберг, С. В. Овсепян, М. М. Бакградзе, М. Н. Летников, И. С. Мазлов. Авиационные материалы. S, 116 (2017).]. Crossref
8. D. V. Ryndenkov, A. S. Perevozov, E. N. Rybantsova, M. G. Khomutov. News from universities. Non-ferrous metallurgy. 1, 69 (2017). (in Russian) [Д. В. Рынденков, А. С. Перевозов, Е. Н. Рыбанцова, М. Г. Хомутов. Изв. вузов. Цвет. металлургия. 1, 69 (2017).]. Crossref
9. Zh. A. Sentyurina, F. A. Baskov, P. A. Loginov, Y. Y. Kaplanskii, A. V. Mishukov, I. A. Logachev, M. Y. Bychkova, E. A. Levashov, A. I. Logacheva. Additive Manufacturing. 37, 101629 (2021). Crossref
10. F. A. Baskov, Zh. A. Sentyurina, Yu. Yu. Kaplanskii, I. A. Logachev, A. S. Semerich, E. A. Levashov. Materials Science and Engineering: A. 817, 141340 (2021). Crossref
11. H. Wen, J. Jin, X. Tang, X. Wang, H. Yang, Y. Zhang, L. Deng, P. Gong, Q. Wei, Y. He, J. Guo. Journal of Materials Science & Technology. 162, 57 (2022). Crossref
12. O. A. Kaibyshev, F. Z. Utyashev. Superplastisity, structure refinement and processing of hard-to-deform alloys. Moscow, Science (2002) 438 p. (in Russian) [О. А. Кайбышев. Ф. З. Утяшев. Сверхпластичность, измельчение структуры и обработка труднодеформируемых сплавов. Москва, Наука (2002) 438 с.].
13. O. A. Kaibyshev, V. A. Valitov, G. A. Salishchev. Processing method for precipitation-hardening alloys based on nickel. Patent RU No. 2041284, 08.09.1995. (in Russian) [О. А. Кайбышев, В. А. Валитов, Г. А. Салищев. Способ обработки дисперсионно-твердеющих сплавов на основе никеля. Патент РФ №2041284, 09.08.1995.].
14. R. R. Mulyukov, R. M. Imayev, A. A. Nazarov et al. Superplasticity of ultrafine-grained alloys: Experiment, theory, technologies. Moscow, Nauka (2014) 284 p. (in Russian) [Р. Р. Мулюков, Р. М. Имаев, А. А. Назаров и др. Сверхпластичность ультрамелкозернистых сплавов: эксперимент, теория, технологии. Москва, Наука (2014) 284 с.].
15. V. A. Valitov. Letters on Materials, 3 (1), 50 (2013). (in Russian) [В. А. Валитов. Письма о материалах, 3 (1), 50 (2013).]. Crossref
16. A. A. Ganeev, V. A. Valitov, M. I. Nagimov, V. M. Imayev. Letters on Materials. 10 (1), 100 (2020). (in Russian) [А. А. Ганеев, В. А. Валитов, М. И. Нагимов, В. М. Имаев. Письма о материалах. 10 (1), 100 (2020).]. Crossref
17. E. V. Galieva, E. Y. Klassman, R. R. Gabbasov, E. M. Stepukhov, V. A. Valitov. Letters on materials. 13 (3), 79 (2023). Crossref
18. M. T. Pérez-Prado, M. E. Kassner. Superplasticity. In: Fundamentals of Creep in Metals and Alloys (2nd edition). Elsevier Ltd (2008) pp. 135 - 152. Crossref
19. S. Lv, C. Jia, X. He, Z. Wan, X. Li, X. Qu. Materials Science. 12 (22), 3667 (2022). Crossref
20. E. V. Galieva, A. Kh. Akhunova, V. A. Valitov, E. Yu. Klassman. Letters on materials. 12 (3), 243 (2022). Crossref
21. R. V. Safiullin, V. A. Valitov, R. Ya. Lutfullin, E. V. Galieva, E. Yu. Klassman. Letters on Materials, 12 (4s), 439 (2022). Crossref
22. G. K. Wang, S. Y. Cheng, S. Y. Li, X. W. Zhang. Advanced Materials Research. 291 - 294, 579 (2011). Crossref
23. V. A. Tamila, A. Yu. Izobello, N. G. Kozyrev, A. L. Mantsivoda. Foundry production and metallurgy. 4, 97 (2022). (in Russian) [В. А. Томило, А. Ю. Изобелло, Н. Г. Козырев, А. Л. Манцивода. Литье и металлургия. 4, 97 (2022).]. Crossref
24. F. Z. Utyashev, R. Yu. Sukhorukov, A. K. Galimov, L. V. Gavrilina. Journal of Machinery Manufacture and Reliability. 52, 60 (2023). Crossref
25. A. Chamanfar, H. S. Valberg, B. Templin, J. E. Plumeri et al. Materialia. 6, 100319 (2019). Crossref
26. A. A. Drozdov, K. B. Povarova, V. A. Valitov, E. V. Galieva, E. G. Arginbaeva, O. A. Bazyleva, M. A. Bulakhtina, A. N. Raevskikh. Metally. 2020 (7), 752 (2020). Crossref
27. R. Ya. Lutfullin. Letters on Materials. 1 (1), 59 (2011). (in Russian) [Р. Я. Лутфуллин. Письма о материалах. 1 (1), 59 (2011).]. Crossref
28. E. V. Galieva, K. B. Povarova, A. A. Drozdov, V. A. Valitov. Metally. 2018 (11), 1067 (2018). Crossref
29. A. A. Drozdov, K. B. Povarova, V. A. Valitov, O. A. Bazyleva, E. V. Galieva, M. A. Bulakhtina, E. G. Arginbaeva. Metally. 2019 (11), 1195 (2019). Crossref
30. V. A. Valitov, R. R. Mulyukov, M. F. X. Gigliotti, P. R. Subramanian. Superalloys 2008. TMS. (2008) pp. 325 - 331. Crossref

Similar papers

Funding

1. Ministry of Education and Science of the Republic of Bashkortostan - the Grant of Republic of Bashkortostan (Agreement No.1 from 14.08.2023)
2. Institute for metals superplasticity problems of the russian academy of sciences - State assignment No. 122011900470-7
3. Institute for metals superplasticity problems of the russian academy of sciences - State assignment No. 122011900474-5