Computer simulation of pressure welding with a shear of samples from dissimilar nickel-based superalloys

A.K. Akhunova, V.A. Valitov, E.V. Galieva show affiliations and emails
Received 15 May 2020; Accepted 02 July 2020;
This paper is written in Russian
Citation: A.K. Akhunova, V.A. Valitov, E.V. Galieva. Computer simulation of pressure welding with a shear of samples from dissimilar nickel-based superalloys. Lett. Mater., 2020, 10(3) 328-333
BibTex   https://doi.org/10.22226/2410-3535-2020-3-328-333

Abstract

A stress-strain state computer simulation of samples imitating bimetallic «disk-shaft» type parts for a gas turbine engine from dissimilar heat-resistant nickel-based superalloys during pressure welding with a shear was carried out. Two shaft motion schemes were considered: the shaft into the disk introduction, and the combination of the introduction and rotation of the shaft. It has been established that to obtain solid phase joint between the shaft and the disk, it is preferred to use pressure welding when the introduction and rotation of the shaft.A stress-strain state computer simulation of samples imitating bimetallic “disk-shaft” type parts for a gas turbine engine from dissimilar heat-resistant nickel-based superalloys during pressure welding with a shear was carried out. The simulation was performed in a two-dimensional formulation (axisymmetric problem) using the DEFORM-2D. Two shaft motion schemes, embedding of a shaft into a disk and a combination of the embedding and rotation of the shaft, were considered. To determine the influence of the microstructure of samples on the plastic deformation process in the joint zone, two combinations of nickel-based superalloys were considered: the material for the shaft in all cases was EK79 (fine-grained microstructure, 7 μm), the material for the disk was EP741NP (coarse-grained microstructure, 60 μm) or EP975 (fine-grained microstructure, 8 μm). The constitutive relations for the superalloys under study were introduced into the program as the experimental stress-strain curves obtained from uniaxial compression of cylindrical samples. Computer simulation results showed that to improve the joint quality it was preferable to use pressure welding with the embedding and rotation of the shaft. In this case two-component shear deformation was provided that lead to a relative shift of the surfaces to weld and an improvement of the conditions for the formation of physical contact. It has been established that to obtain a solid phase joint between the shaft and the disk, it is preferred to use the EK79 (shaft) and EP975 (disk) superalloys, since in this case the summarized normal compressive stresses and shear deformations are provided which leads to an increase of the joint quality.

References (16)

1. C. Soares. Gas Turbines A Handbook of Air, Land and Sea Applications. Oxford, Butterworth-Heinemann, Elsevier (2015).
2. A. V. Logunov, Yu. N. Shmotin. Modern high - temperature nickel - based alloys for gas turbine. Moscow, Nauka i tekhnologiya (2013) 256 p. (in Russian) [А. В. Логунов, Ю. Н. Шмотин. Современные жаропрочные никелевые сплавы для дисков газовых турбин. Москва, Наука и технология (2013) 256 с.].
3. M. M. Bakradze, A. V. Skugorev, V. V. Kucheryaev, M. V. Bubnov. Aviation Materials and Technologies. 5, 175 (2017). (in Russian) [М. М. Бакрадзе, А. В. Скугорев В. В. Кучеряев, М. В. Бубнов. Авиационные материалы и технологии. 5, 175 (2017). Crossref
4. A. V. Lyushinsky. Svarochnoye proizvodstvo. 7, 17 (2016). (in Russian) [А. В. Люшинский. Сварочное производство. 7, 17 (2016).].
5. A. V. Skugorev, A. N. Afanasiev-Khodykin, A. M. Rogalev, D. S. Lozhkova. Tekhnologiya legkikh splavov. 3, 75 (2016). (in Russian) [А. В. Скугоров, А. Н. Афанасьев-Ходыкин, А. М. Рогалев, Д. С. Ложкова. Технология легких сплавов. 3, 75 (2016).].
6. I. Dolezel, V. Kotlan, B. Ulrych. Journal of Computational and Applied Mathematics. 270, 52 (2014). Crossref
7. J. Liu, J. Cao, X. Lin, X. Song, J. Feng. Materials and Design. 49, 622 (2013). Crossref
8. O. G. Ospennikova, V. I. Lukin, A. N. Afanasev-Khodykin, I. A. Galushka. Trudy VIAM. 10 (70), 10 (2018). (in Russian) [О. Г. Оспенникова, В. И. Лукин, А. Н. Афанасьев-Ходыкин, И. А. Галушка. Труды ВИАМ. 10 (70), 10 (2018).]. Crossref
9. Z. Heng, M. Maeda, Y. Takahashi. IOP Conference Series: Materials Science and Engineering. 61 (1), 012003 (2014). Crossref
10. R. R. Mulyukov, A. A. Nazarov, R. M. Imayev. Letters on Materials. 8 (4s), 510 (2018). Crossref
11. E. V. Galieva, R. YA. Lutfullin, A. KH. Akhunova, V. A. Valitov, S. V. Dmitriev. Science and technology of welding and joining. 23 (7), 612 (2018). Crossref
12. E. V. Galieva, V. A. Valitov, R. Ya. Lutfullin, S. V. Dmitriev, A. Kh. Akhunova, M. Kh. Mukhametrakhimov. Materials Science Forum. 838 - 839, 350 (2016). Crossref
13. K. B. Povarova, A. A. Drozdov, V. A. Valitov, E. V. Valitova, S. V. Obsepyan, O. A. Bazyleva. Russian metallurgy (Metally). 2014 (9), 733 (2014). Crossref
14. A. K. Akhunova, E. V. Valitova, S. V. Dmitriev, V. A. Valitov, R. Y. Lutfullin. Welding International. 30 (6), 488 (2016). Crossref
15. V. A. Valitov, A. K. Akhunova, E. V. Galieva, S. V. Dmitriev, R. Y. Lutfullin, M. Y. Zhigalova. Lett. Mater. 7 (2), 180 (2017). (in Russian) [В. А. Валитов, А. Х. Ахунова, Э. В. Галиева, С. В. Дмитриев, Р. Я. Лутфуллин, М. Ю. Жигалова. Письма о материалах. 7 (2), 180 (2017).]. Crossref
16. A. K. Akhunova, E. V. Galieva, A. A. Drozdov, E. G. Arginbaeva, S. V. Dmitriev, R. Y. Lutfullin. Lett. Mater. 6 (3), 211 (2016). (in Russian) [А. Х. Ахунова, Э. В. Галиева, А. А. Дроздов, Э. Г. Аргинбаева, С. В. Дмитриев, Р. Я. Лутфуллин. Письма о материалах. 6 (3), 211 (2016).]. Crossref

Similar papers

Funding

1. Russian Science Foundation - grant № 18-19-00685
2. IMSP RAS State assignment - AAAA-A17‑117041310215‑4