Computer simulation of pressure welding of heat resistant heterophase nickel-based superalloys specimens through an interlayer

A.K. Akhunova, V.A. Valitov, E.V. Galieva show affiliations and emails
Received 01 April 2021; Accepted 23 May 2021;
This paper is written in Russian
Citation: A.K. Akhunova, V.A. Valitov, E.V. Galieva. Computer simulation of pressure welding of heat resistant heterophase nickel-based superalloys specimens through an interlayer. Lett. Mater., 2021, 11(3) 254-260
BibTex   https://doi.org/10.22226/2410-3535-2021-3-254-260

Abstract

Computer modeling of the pressure welding process of cylindrical workpieces from heterophase nickel-based superalloys through an interlayer was carried out.Two combinations of materials to be welded were considered: I – cylinders of the same wrought EP975 nickel-based superalloys in the initial coarse-grained state were welded through an interlayer of EP975 with a fine-grained microstructure; II – cylinders of different kinds nickel-based alloys, including wrought alloy EP975 in a coarse-grained state and intermetallic alloy VKNA-25 with a single-crystal structure, were welded through an interlayer of EP975 alloy with a fine-grained microstructure of the microduplex type.
The distribution of equivalent, axial, radial, circumferential and shear components of stress and strain in the samples have been investigated. Analysis of the simulation results allows us to conclude that, in comparison to welding of the same name materials, when welding of different kinds materials, the radial, axial and circumferential stresses values increase. The maximum values area of shear stresses in the region of contact between the cylinders and the interlayer also increases. This factors combination allows us to conclude about more favorable pressure welding conditions for welding of different kinds alloys in comparison with the same name materials.Computer simulation of pressure welding of cylindrical workpieces through an interlayer was carried out using the DEFORM-2D software package in a two-dimensional formulation (axisymmetric deformation). Two combinations of materials to weld were considered: sample I — cylinders of heterophase nickel-based deformable superalloy EP975 in a coarse-grained state were welded through an interlayer of EP975 with a fine-grained microduplex structure; sample II — cylinders of dissimilar nickel-based alloys, one the deformable alloy EP975 in a coarse-grained state and the other an intermetallic alloy VKNA-25 with a single-crystal structure, were welded through an interlayer of EP975 alloy with a fine-grained microduplex structure. The welding process was carried out under isothermal conditions at a temperature of 1125°C and an initial strain rate of 10−4 s−1. The material characteristics were described by experimental curves obtained under uniaxial compression tests of alloys at the welding temperature. The Siebel friction model was used to describe the contact conditions on the surfaces to be welded. The friction coefficient was taken equal to 0.3. The distribution of equivalent, axial, radial, circumferential and shear components of stress and strain in the samples have been investigated. Analysis of the simulation results allowed one to conclude that, in comparison to welding of similar materials, during welding of dissimilar materials the values of the radial, axial and circumferential stresses increase. Radial and circumferential stresses in the material of the cylinders are tensile, while compressive stresses prevail in the material of the interlayer. Area with the maximum values of shear stresses in the region of contact between the cylinders and the interlayer also increases. In this case, axial, radial and circumferential strains decrease in a cylinder made from a material with higher strength, the overall level of shear strain does not change, and on the reciprocal contact surface of the interlayer, the region of extension of maximum shear strain extends to the entire contact zone. Such a combination of factors allows one to conclude on more favorable pressure welding conditions for welding of dissimilar alloys in comparison with similar materials.

References (19)

1. Z. Heng, M. Maeda, Y. Takahashi. IOP Conference Series: Materials Science and Engineering. 61 (1), 012003 (2014). Crossref
2. R. R. Mulyukov et al. Lett. Mater. 8 (4s), 510 (2018). Crossref
3. E. V. Galieva, R. YA. Lutfullin, A. Kh. Akhunova, V. A. Valitov, S. V. Dmitriev. Science and technology of welding and joining. 23 (7), 612 (2018). Crossref
4. E. S. Karakozov. Metal pressure welding. Moscow, Mashinostroenie (1986) 280 p. (in Russian) [Э. С. Каракозов. Сварка металлов давлением. Москва, Машиностроение (1986) 280 с.].
5. R. A. Musin, V. N. Antsiferov, V. F. Kvasnitsky. Diffusion welding of heat-resistant alloys. Moscow, Metallurgiya (1979) 208 p. (in Russian) [Р. А. Мусин, В. Н. Анциферов, В. Ф. Квасницкий. Диффузионнная сварка жаропрочных сплавов. Москва, Металлургия (1979) 208 с.].
6. A. V. Lyushinsky. Diffusion welding of dissimilar materials. Moscow, Academiya (2006) 208 p. (in Russian) [А. В. Люшинский. Диффузионная сварка разнородных материалов. Москва, Академия (2006) 208 с.].
7. A. S. Gelman. Basics of pressure welding. Moscow, Mashinostroenie (1970) 312 p. (in Russian) [А. С. Гельман Основы сварки давлением. Москва, Машиностроение (1970) 312 с.].
8. A. V. Lyushinsky, E. V. Nikolic, A. A. Zhloba, S. V. Kharkovsky. Welding production. 5, 25 (2014). (in Russian) [А. В. Люшинский, Е. В. Николич, А. А. Жлоба, С. В. Харьковский. Сварочное производство. 5, 25 (2014).].
9. O. A. Kaibyshev, R. V. Safiullin, R. Ya. Lutfullin, V. V. Astanin. Journal of Materials Engineering and Performance. 8 (2), 205 (1999). Crossref
10. O. A. Kaibyshev, R. Ya. Lutfullin, V. K. Berdin. Acta Metallurgica et Materialia. 42 (8), 2609 (1994). Crossref
11. C. Soares. Gas Turbines. A Handbook of Air, Land and Sea Applications. Oxford, Butterworth-Heinemann, Elsevier (2015).
12. A. V. Logunov, Yu. N. Shmotin. Modern high-temperature nickel-based alloys for gas turbine. Moscow, Nauka i tekhnologiya (2013) 256 p. (in Russian) [А. В. Логунов, Ю. Н. Шмотин. Современные жаропрочные никелевые сплавы для дисков газовых турбин. Москва, Наука и технология (2013) 256 с.].
13. A. K. Akhunova, E. V. Valitova, S. V. Dmitriev, V. A. Valitov, R. Y. Lutfullin. Welding International. 30 (6), 488 (2016). Crossref
14. A. K. Akhunova, S. V. Dmitriev, V. A. Valitov, E. V. Galieva. Welding production. 12, 17 (2020). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, В. А. Валитов, Э. В. Галиева. Сварочное производство. 12, 17 (2020).].
15. E. V. Valitova, R. Ya. Lutfullin, M. Kh. Mukhametrahimov, V. A. Valitov, A. Kh. Akhunova, S. V. Dmitriev. Lett. Mater. 4 (4), 291 (2014). Crossref
16. V. A. Valitov, A. K. Akhunova, E. V. Galieva, S. V. Dmitriev, R. Y. Lutfullin, M. Y. Zhigalova. Lett. Mater. 7 (2), 180 (2017). (in Russian) [В. А. Валитов, А. Х. Ахунова, Э. В. Галиева, С. В. Дмитриев, Р. Я. Лутфуллин, М. Ю. Жигалова. Письма о материалах. 7 (2), 180 (2017).]. Crossref
17. A. K. Akhunova, et al. Lett. Mater. 6 (3), 211 (2016). (in Russian) [А. Х. Ахунова и др. Письма о материалах. 6 (3), 211 (2016).]. Crossref
18. A. K. Akhunova, V. A. Valitov, E. V. Galieva. Lett. Mater. 10 (3), 328 (2020). (in Russian) [А. Х. Ахунова, В. А. Валитов, Э. В. Галиева. Письма о материалах. 10 (3), 328 (2020).]. Crossref
19. R. Ya. Lutfullin, et al. Advanced materials. 12, 295 (2011). (in Russian) [Р. Я. Лутфуллин и др. Перспективные материалы. 12, 295 (2011).].

Similar papers

Funding

1. IMSP RAS State assignment - AAAA-A17‑117041310215‑4