The Role of Shear Deformation Component in Pressure Welding Samples of Dissimilar Cast and Wrought Nickel-Based Alloys

A.K. Akhunova, E.V. Galieva, A.A. Drozdov, E.G. Arginbaeva, S.V. Dmitriev, R.Y. Lutfullin
Received: 24 June 2016; Accepted: 29 August 2016
This paper is written in Russian
Citation: A.K. Akhunova, E.V. Galieva, A.A. Drozdov, E.G. Arginbaeva, S.V. Dmitriev, R.Y. Lutfullin. The Role of Shear Deformation Component in Pressure Welding Samples of Dissimilar Cast and Wrought Nickel-Based Alloys. Letters on Materials, 2016, 6(3) 211-216
BibTex   DOI: 10.22226/2410-3535-2016-3-211-216


A material plastic flow finite-element modeling during pressure welding (PW) of two-element and three-element samples was carried out for dissimilar wrought (EP975) and cast intermetallic (VKNA-type) alloys at 1125°C and 10-4 s-1 initial strain rate. The finite-element modeling was performed in a two-dimensional set-up (plane strain). In the two-element samples case, the top element was ultrafine grained EP975 and the bottom one was VKNA-25. The top and bottom elements of the three-element samples were made from VKNA-25 while the intermediate element was ultrafine-grained EP975. The geometry in the X and Y directions were 40.5 and 5 mm for the EP975 samples and 40.5 and 3 mm for the VKNA-25 samples respectively. Experiments on PW intermetallic Ni3Al alloy and heat-resistant nickel alloy EP975 with ultrafine-grained (UFG) structure were carried out. Samples were parallelepipeds of size 10x40x3 mm3 and 10x40x5 mm3 respectively. PW was carried out at 1125 ˚C. Several combinations of welded sample surfaces with flat and grooved relief were considered. The relief made on both welded surfaces was equivalent to increase of friction between them. This results in a shear deformation reduction near the contact surfaces and degrades the welding quality as compared to the flat surfaces conventional welding. Relief applied only to one of the elements being welded results in a more efficient welding process since active deformation zones are created in the central zone, where in the other samples stagnant zones are observed. There are no deformation peculiarities in PW of the three-element samples, compared to two-element sample.

References (16)

E. S. Karakozov. Soedinenie metallov v tverdoi phase. M.: Metallurgy, (1976) 224 p. (in Russian) [Э. С. Каракозов Соединение металлов в твердой фазе. М.: Металлургия, 1976, 224с]
R. Ya. Lutfullin. Letters on Materials. 1 (1), 59 – 64 (2011). (in Russian) [Р. Я. Лутфуллин. Письма о материалах. 1 (1), 59 – 64 (2011).]
K. B. Povarova, V. A. Valitov, S. V. Ovsepyan, A. A. Drozdov, O. A. Bazyleva, E. V. Valitova. Russian metallurgy. (9), 733 – 741 (2014)
B. S. Lomberg, S. V. Ovsepyan, M. M. Bakradze, I. S. Mazalov. 80 years. Aviacionnye materialy i tekhnologii: yubil. nauchn.‑techknich. sb. (prilozhenie k zhurnalu Aviacionnye materialy). M. VIAM, 52 – 57 (2012). (in Russian) [Б. С. Ломберг, С. В. Овсепян, М. М. Бакрадзе, И. С. 80 лет. Авиационные материалы и технологии: юбил. науч.‑технич. сб. (приложение к журналу «Авиационные материалы и технологии») / под общ. ред. акад. РАН, проф. Е. Н. Каблова. — М.: Изд. ВИАМ, 2012. С. 52 – 57].
A. V. Logunov, Yu. N. Shmotin. Modern high temperature nickel alloys for disks of gas turbines. Moscow. Public corporation «Science and Technology». (2013) 256 p. (in Russian) [А. В. Логунов, Ю. Н. Шмотин. Наука и технология. (2013) 256 с.]
E. V. Valitova, A. Kh. Akhunova, V. A. Valitov, S. V. Dmitriev, R. Ya. Lutfullin, Letters on Materials. 4 (3), 190 – 194 (2014). (in Russian) [Э. В. Валитова, А. Х. Ахунова, В. А. Валитов, С. В. Дмитриев, Р. Я. Лутфуллин, М. Х. Мухаметрахимов. Письма о материалах. 4 (3), 190 – 194 (2014)]
A. Kh. Akhunova, S. V. Dmitriev, E. V. Galieva, V. A. Valitov. Fundamentalnye problem sovremennogo materialovedeniya. 12 (3), 289 – 292 (2015). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, Э. В. Галиева, В. А. Валитов. Фундаментальные проблемы современного материаловедения. 12 (3), 289 – 292 (2015).]
E. V. Valitova, R. Ya. Lutfullin, M. Kh. Mukhametrakhimov, V. A. Valitov, A. Kh. Akhunova, S. V. Dmitriev. Letters on Materials. 4 (4), 291 – 294 (2014).
I. I. Musabirov, R. R. Mulyukov, V. V. Koledov. IOP Conference Series: Materials Science and Engineering. 82, 012064‑1‑4 (2015)
I. I. Musabirov, I. Z. Sharipov, R. R. Mulyukov. Russian Physics Journal. 58 (6), 5 – 9 (2015)
V. A. Valitov. Tyazheloe mashinostroenie. (4), 23 – 28 (2007). (in Russian) [Валитов В. А. Тяжелое машиностроение. (4), 23 – 28 (2007).]
E. V. Valitova, M. Kh. Mukhametrakhimov, R. Ya. Lutfullin, V. A. Valitov. Perspectivnye materialy. (15), 35 – 39 (2013). (in Russian) [Э. В. Валитова, М. Х. Мухаметрахимов, Р. Я. Лутфуллин, В. А. Валитов. Перспективные материалы 15, 33 – 39 (2013).]
A. Kh. Akhunova, S. V. Dmitriev, E. V. Valitova, V. A. Valitov. Fundamentalnye problem sovremennogo materialovedeniya. 11 (2), 159 – 162 (2014). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, Э. В. Валитова, В. А. Валитов. Фундаментальные проблемы современного материаловедения. 11 (2), 159 – 162 (2014).]
A. Kh. Akhunova, S. V. Dmitriev, V. A. Valitov, E. V. Valitova. Russian metallurgy (Metally) (11), 13 – 17 (2014). (in Russian) [А. Х. Ахунова, С. В. Дмитриев, В. А. Валитов, Э. В. Валитова Деформация и разрушение материалов. (11), 13 – 17 (2014).]
A. Kh. Akhunova, E. V. Valitova, S. V. Dmitriev, V. A. Valitov, R. Ya. Lutfullin Welding International. 30 (6), 488 – 491 (2016).
A. K. Bulkov, V. V. Peshkov, V. R. Petrenko, D. N. Balbekov, A. I. Stryguin. Welding International. 28 (3), 222-227 (2014).