Investigation of the influence of excess free volume on the mobility of triple junctions of grain boundaries

D.V. Novoselova, G.M. Poletaev, V.V. Kovalenko

Abstract

The influence of excess free volume in the triple junctions of grain boundaries on their mobility is studied by the molecular dynamics methodThe effect of excess free volume on the mobility of triple junctions of grain boundaries by the example of nickel was studied by the molecular dynamics method. Triple junctions of tilt boundaries with <100> and <111> misorientation axes were considered. Migration of the junctions was simulated by creating a nonequilibrium configuration of the joining boundaries – their migration, as a result of which they took an equilibrium position, led to migration of the triple junction (model proposed by L.S. Shvindlerman and co-authors). The interactions of nickel atoms with each other in the molecular dynamics model were described by the many-body Cleric-Rosato potential constructed within the tight binding model. The free volume was introduced locally into the triple junction region with the radius of 1 nm. The percentage of the removed atoms from the considered region was varied from 0% to 80%. Molecular dynamic simulation showed that the migration velocity of the triple junction is practically independent of the free volume value. This is explained by the fact that most part of the free volume introduced at the initial stage does not migrate with the triple junction but remains at the point where it was introduced and distributed along the boundary which lengthens during the migration of the junction. The smaller part of the free volume however remains in the joint but its presence has little effect on the mobility of the triple junction. This is mainly influenced by the mobility of the joining boundaries and the ratio of their tension.

References (24)

1.
I. A. Ovid’ko. Materials Physics and Mechanics. 8 (2), 174 (2009).
2.
G. Gottstein, V. Sursaeva, L. Shvindlerman. Interface Science. 7, 273 (1999).
3.
S. G. Protasova, V. G. Sursaeva, L. S. Shvindlerman. Physics of the Solid State. 45, 1471 (2003).
4.
U. Czubayko, G. Gottstein, V. G. Sursaeva, L. S. Shvindlerman. Acta Materialia. 46 (16), 5863 (1998).
5.
G. Gottstein, L. S. Shvindlerman, V. G. Sursaeva. Scripta Materialia. 116, 91 (2016).
6.
G. Gottstein, Y. Ma, L. S. Shvindlerman. Acta Materialia. 53, 1535 (2005).
7.
M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, G. Gottstein. Interface Science. 7, 307 (1999).
8.
M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, G. Gottstein. Acta Materialia. 50, 1405 (2002).
9.
C. Mießen, M. Liesenjohann, L. A. Barrales-Mora, L. S. Shvindlerman, G. Gottstein. Acta Materialia. 99, 39 (2015).
10.
G. Palumbo, K. T. Aust. Scripta Metallurgica et Materialia. 24, 1771 (1990).
11.
A. I. Gusev. Physics-Uspekhi. 41, 49 (1998).
12.
P. Rodriguez, D. Sundararaman, R. Divakar, V. S. Raghunathan. Chemistry for Sustainable Development. 8, 69 (2000).
13.
G. M. Poletaev, D. V. Novoselova, V. M. Kaygorodova, M. D. Starostenkov. Fundamentalnye problemy sovremennogo materialovedenia. 12 (2), 253 (2015) (in Russian) [Г. М. Полетаев, Д. В. Новоселова, В. М. Кайгородова, М. Д. Старостенков Фундаментальные проблемы современного материаловедения. 12 (2), 253 (2015)].
14.
G. M. Poletaev, D. V. Novoselova, V. M. Kaygorodova. Solid State Phenomena. 249, 3 (2016).
15.
Полетаев Г. М. Molecular dynamics research (MDR). Свидетельство о государственной регистрации программы для ЭВМ № 2015661912 от 12.11.2015.
16.
G. M. Poletaev, A. B. Yuryev, V. E. Gromov, M. D. Starostenkov. Atomic mechanisms of structural-energy transformations near tilt grain boundaries in fcc metals and Ni3Al intermetallide. Novokuznetsk, SibSIU. (2008) 160 p. [Г. М. Полетаев, А. Б. Юрьев, В. Е. Громов, М. Д. Старостенков. Атомные механизмы структурно-энергетических превращений вблизи границ зерен наклона в ГЦК металлах и интерметаллиде Ni3Al. Новокузнецк, СибГИУ. (2008) 160 с].
17.
F. Cleri, V. Rosato. Physical Review B. 48 (1), 22 (1993).
18.
G. M. Poletaev, D. V. Dmitrienko, V. V. Diabdenkov, V. R. Mikrukov, M. D. Starostenkov. Physics of the Solid State. 55 (9), 1920 (2013).
19.
G. M. Poletaev, M. D. Starostenkov, S. V. Dmitriev. Materials Physics and Mechanics. 27 (1), 53 (2016).
20.
G. M. Poletaev, M. D. Starostenkov. Technical Physics Letters. 35 (1), 1 (2009).
21.
R. Yu. Rakitin, G. M. Poletaev, M. S. Aksenov, M. D. Starostenkov. Technical Physics Letters. 31 (8), 650 (2005).
22.
A. A. Valuev, G. E. Normann, V. Y. Podlipchuk. Method of molecular dynamics: theory and applications / In: Mathematical modeling: Physicochemical properties of matter. Moscow, Nauka. (1989) p. 5 – 40 [А. А. Валуев, Г. Э. Норманн, В. Ю. Подлипчук. Метод молекулярной динамики: теория и приложения / В кн.: Математическое моделирование: Физико-химические свойства вещества. Москва, Наука (1989) С. 5 – 40].
23.
M. D. Starostenkov, N. N. Medvedev, G. M. Poletaev. To the question of systematic errors in MMD / In: Measurements, automation and modeling in industry and scientific research (Ed. G. V. Leonov). Barnaul, AltSTU (2005) p. 5 – 8 [М. Д. Старостенков, Н. Н. Медведев, Г. М. Полетаев. К вопросу о систематических погрешностях в ММД / В кн.: Измерения, автоматизация и моделирование в промышленности и научных исследованиях (под. ред. Г. В. Леонова). Барнаул, АлтГТУ (2005) С. 5 – 8].
24.
G. M. Poletaev, D. V. Novoselova, I. V. Zorya, M. D. Starostenkov. Materials Physics and Mechanics. 30 (1), 68 (2017).