A method for the construction of initial structures for molecular dynamics simulations of nanocrystals with nonequilibrium grain boundaries containing extrinsic dislocations

A.A. Nazarov1, R.T. Murzaev1
1Institute for Metals Superplasticity Problems of the Russian Academy of Sciences, 39 Khalturin street, Ufa 450001, Russia

Дополнительный материал


A method for the construction of initial atomic models of nanocrystals with extrinsic dislocations in grain boundaries for molecular dynamics simulations is developed. The method is used to determine atomic structures and energies of grain boundaries in columnar f.c.c. nanocrystals with [112] column axis.A method for the construction of initial atomic models of nanocrystals with extrinsic grain boundary dislocations (EGBDs) in grain boundaries (GBs) for molecular dynamics (MD) simulations is developed. The method is realized for f.c.c. nanocrystals with columnar grains having common crystallographic axis [112] parallel to the column axis and thus divided only by [112] tilt GBs. This system is convenient for studies of interactions between GBs and lattice dislocations, since each grain can be deformed by edge dislocations of only one slip system, which have lines parallel to the [112] axis. In order to introduce extrinsic dislocations to the boundaries of a selected grain, its contour is assumed to be strained by a given shear strain  so that a contour of a freely sheared grain is formed. This contour is filled in by atoms of a f.c.c. lattice with [112] direction parallel to the column axis and then the grain thus formed is subjected to an elastic shear strain -. This results in a deformed grain having the original shape, on the boundaries of which precursors of EGBDs are formed. In order to prevent these precursors from spontaneous annihilation during MD relaxation, one can temporarily fix GB atoms, or apply a proper external stress, or do both. A case study is carried out using two different protocols of MD relaxation to determine atomic structures and energies of nonequilibrium GBs.

Received: 17 October 2017   Revised: 21 December 2017   Accepted: 28 December 2017

Views: 28   Downloads: 9


T. P. Darby, R. Schindler, R. W. Balluffi, Philos. Mag. 37, 245 (1978). DOI: 10.1080/01418617808235438
R. Z. Valiev, V. Yu. Gertsman, O. A. Kaibyshev, Phys. Stat. Sol. (a) 97, 11 (1986). DOI: 10.1002/pssa.2210970102
H. Gleiter. J. Less-Common Metals. 28, 237 (1972). DOI: 10.1016/0022-5088(72)90132-4
A. A. Nazarov, A. E. Romanov, R. Z. Valiev, Acta Metall. Mater. 41, 1033 (1993). DOI: 10.1016/0956-7151(93)90152‑I
P. H. Pumphrey, H. Gleiter. Philos. Mag. 32, 881 (1975). DOI: 0.1080/14786437508221629
I. A. Ovid’ko, A. G. Sheinerman. Philos. Mag. 83, 1551 (2003). DOI: 10.1080/1478643031000088674
A. A. Nazarov. Philos. Mag. Lett. 80, 221 (2000). DOI: 10.1080/095008300176191
A. A. Nazarov. Philos. Mag. A 69, 327 (1994). DOI: 10.1080/01418619408244347
R. R. Mulyukov. Rev. Adv. Mater. Sci. 11, 122 (2006).
R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. Wiley, Hoboken. (2013).
A. A. Nazarov, R. R. Mulyukov. Handbook of Nanoscience, Engineering, and Technology. Eds. W. Goddard, D. Brenner, S. Lyshevski, G. Iafrate. CRC Press, Boca Raton. (2002) pp.22‑1‑22‑41.
R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov, Mater. Sci. Eng. A. 168, 141 (1993). DOI: 10.1016/0921-5093(93)90717‑S
A. P. Zhilyaev, B.‑K. Kim, J. A. Szpunar, M. D. Baro, T. G. Langdon. Mater. Sci. Eng. A 391 (2005) 377. DOI: 10.1016/j.msea.2004.09.030
V. V. Rybin. Large Plastic Deformations and Fracture of Metals. Metallurgiya, Moscow. (1986) 224 p. (in Russian). [В. В. Рыбин. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.]
A. A. Nazarov, A. E. Romanov, R. Z. Valiev. Nanostr. Mater. 6, 775 (1995). DOI: 10.1016/0965-9773(94)90131-7
A. A. Nazarov, A. E. Romanov, R. Z. Valiev., Scripta Mater. 34, 729 (1996). DOI: 10.1016/1359-6462(95)00573-0
A. A. Nazarov, Scripta Mater. 37, 1155 (1997). DOI: 10.1016/S1359-6462(97)00230-3
A. Hasnaoui, H. Van Swygenhoven, P. M. Derlet. Acta Mater. 50, 3927 (2002). DOI: 10.1016/S1359-6454(02)00195-7
G. J. Tucker, D. L. McDowell. Int. J. Plast. 27, 841 (2011). DOI: 10.1016/j.ijplas.2010.09.011
T. J. Rupert, C. A. Schuh. Phil. Mag. Lett. 92, 20 (2012). DOI: 10.1080/09500839.2011.619507
T. Shimokawa, T. Hiramoto, T. Kinari, S. Shintaku. Mater. Trans. 50, 2 (2009). DOI: 10.2320/matertrans.MD200810
A. A. Nazarov, A. E. Romanov, R. Z. Valiev. Phys. Stat. Sol. (a) 122, 495 (1990). DOI: 10.1002/pssa.2211220208
S. M. Foiles, M. I. Daw, M. S. Baskes. Phys. Rev. B 33, 7983 (1986). DOI: 10.1103/PhysRevB.33.7983
XMD – Molecular Dynamics for Metals and Ceramics. http://xmd.sourceforge.net/about.html.
Home page for RasMol and Open RasMol. http://www.openrasmol.org.
A. Stukowski. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). DOI: 10.1088/0965-0393/18/1/015012
J. D. Honeycutt, H. G. Andersen. J. Chem. Phys. 91, 4950 (1987). DOI: 10.1021/j100303a014
D. V. Bachurin, R. T. Murzaev, A. A. Nazarov. Modelling Simul. Mater. Sci. Eng. 25, 085010 (2017). DOI: 10.1088/1361-651X/aa9199