Two-dimensional model of the ordered alloy for the investigation of martensitic transformations

R. Babicheva, J. Baimova, S. Dmitriev, V. Pushin show affiliations and emails
Received  13 November 2015; Accepted  03 December 2015
Citation: R. Babicheva, J. Baimova, S. Dmitriev, V. Pushin. Two-dimensional model of the ordered alloy for the investigation of martensitic transformations. Lett. Mater., 2015, 5(4) 359-363
BibTex   https://doi.org/10.22226/2410-3535-2015-4-359-363

Abstract

Two-dimensional model of diatomic crystal is proposed in the present work for the investigation of martensitic transformation under thermomechanical treatment, i.e. the proposed modell allows to simulate temperature effect as well as external loading, like tension, plastic deformation, ets. The model, based on the Morse potential, which are used for the simulation of the diatomic crystal of NiTi type, which is well known as an alloy with the martensitic transformation. This model allows one to define the main characteristics of different phases as the function of one of the potential parameter at 0 K. Potential parameters for the realization of forward and reverse martensitic transformation at finite temperatures are found by the careful checking of all the values. The appearance of one preferable martensite phase is shown despite there are two possible martensite phases. The appearance of the domain boundaries is shown for the martensite phase because of the realization of two opposite direction of martensite growth. The starting and finishing temperatures of the martensitic transformation are obtained. The effect of external stresses on the course of the martensitic transformation is investigated. The potential present in this work can be perspectively used for the investigation of such processes as phase hardening in diatomic crystals.

References (17)

1. V.N. Khachin, V.G. Pushin, V.V. Kondratiev; Ed. V.D.Sadovskii. - М.: Nauka, 1992. - 161 p.
2. Shape Memory NiTi Alloys.. Part 1. Structure, PhaseTransformation, and Properties. Ed. V.G. Pushin:Ekaterinburg: УrО RAS, 2006. - 414 p.
3. I. I. Musabirov, I. Z. Sharipov, and R. R. Mulyukov.Russian Physics Journal. 58(6), 745 (2015).
4. K.R. Morrison, M.J. Cherukara, H. Kim, A. Strachan.Acta Mater. 95, 37 (2015).
5. C. Ni, H. Ding, X.J. Jin. Journal of Alloys and Compounds.546, 1 (2013).
6. S. Kazanc, F.A. Celik, S. Ozgen. Journal of Physics andChemistry of Solids. 74, 1836 (2013).
7. T. Suzuki, M. Shimno, K. Otsuka, X. Ren, A. Saxena.Journal of Alloys and Compounds 577, S113 (2013).
8. B. Wang, E. Sak-Saracino, N. Gunkelmann, H.M.Urbassek. Comp. Mater. Sci. 82, 399 (2014).
9. C. Tatar, S. Kazanc. Curr. Appl. Phys. 12, 98 (2012).
10. M.S. Daw, M.I. Baskes. Phys. Rev. B 29, 6443 (1984).
11. A.A. Nazarova, S.V. Dmitriev, Yu.A. Baimova, R.R.Mulyukov, A.A. Nazarov. The Physics of Metals andMetallography. 111(5), 513 (2011).
12. Yu.A. Baimova, S.V. Dmitriev, A.A. Nazarov. The Physicsof Metals and Metallography. 113(3), 302 (2012).
13. V.V. Astanin, Yu.A. Baimova, S.V. Dmitriev, A.I.Pshenichnyuk. The Physics of Metals and Metallography.113(9), 907 (2012).
14. J.A. Baimova, S.V. Dmitriev. Comp. Mater. Sci. 50(4), 1414 (2011).
15. E.A. Korznikova. Letters on Materials. 3(4), 330 (2013).
16. J.A. Baimova, S.V. Dmitriev, E.V. Avtokratova, O.Sh.Sitdicov. Fundamentalnie problem sovremennogomateriallovedeniya. 6(1), 42 (2009).
17. J.A. Baimova, S.V. Dmitriev, V.V. Astanin, A.I.Pshenichnyuk. Fundamentalnie problem sovremennogomateriallovedeniya. 7(3), 7 (2010).

Cited by (5)

1.
M. Wang, S. Jiang, Y. Zhang. Materials. 11(11), 2334 (2018). Crossref
2.
Yu. A. Baimova, S. V. Dmitriev, N. N. Kuranova, R. R. Mulyukov, A. V. Pushin, V. G. Pushin. Phys. Metals Metallogr. 119(6), 589 (2018). Crossref
3.
L. Safina, J. Baimova, K. Krylova, R. Murzaev, R. Mulyukov. Lett. Mater. 10(3), 351 (2020). Crossref
4.
Liliya R. Safina, Julia A. Baimova, Radik R. Mulyukov. Mech Adv Mater Mod Process. 5(1) (2019). Crossref
5.
S. Moravej, A. Taghibakhshi, H. Nejat Pishkenari, J. Arghavani. Journal of Intelligent Material Systems and Structures. 33(4), 604 (2022). Crossref

Similar papers