Molecular dynamics simulation of the effect of dislocations on the martensitic transformations in a two-dimensional model

S. Dmitriev, M. Kashchenko, J. Baimova, R. Babicheva, D. Gunderov, V. Pushin show affiliations and emails
Received 09 October 2017; Accepted 19 November 2017;
Citation: S. Dmitriev, M. Kashchenko, J. Baimova, R. Babicheva, D. Gunderov, V. Pushin. Molecular dynamics simulation of the effect of dislocations on the martensitic transformations in a two-dimensional model. Lett. Mater., 2017, 7(4) 442-446
BibTex   https://doi.org/10.22226/2410-3535-2017-4-442-446

Abstract

Martensitic transformation is investigated in two-dimensional molecular dynamics model. Dislocations affect the direct martensitic transformation as the nucleation centers.One of the effective ways to study various properties of metallic crystals on atomistic level is molecular dynamics simulation. Even simple Morse or Lennard-Jones interatomic potentials can be used to achieve a qualitative agreement with the experiment. For example, molecular dynamics can be used to study the peculiarities of martensitic transformations - thermodynamics, kinetics, structure, morphology, etc. In this paper, the effect of dislocations on the direct and reverse martensitic transformation is studied by molecular dynamics simulation in a two-dimensional model of the ordered alloy with the AB stoichiometry. The three dimensional analog to this structure is B2 superstructure based on bcc lattice, which is characteristic for intermetallic NiTi alloy. It is found, that the dislocations can be considered as the nucleation centers for martensite phase, increasing the temperature of the direct martensitic transformation in comparison with the homogeneous martensitic transformation. The martensite domains found in the structure after transformation and the reverse martensitic transformation takes place in the presence of the domain boundaries, meaning that the austenite nucleates heterogeneously. At the reverse transformation, splitting of perfect dislocations into partials dislocations took place. Thus, it was established in the present study that, on the one hand, dislocations affect the direct martensitic transformation as the nucleation centers, and from the other hand, reverse martensitic transformation changes the dislocation structure of the modeled alloy.

References (36)

1. M. P. Kashchenko, V. G. Chashchina. Phys. Usp. 54 (4), 331 (2011).
2. V. N. Khachin, V. G. Pushin, V. V. Kondrat’ev. Ed. V. D. Sadovskii. - М.: Nauka, 1992. 161 p. (in Russian) [Хачин В. Н., Пушин В. Г., Кондратьев В. В. Отв. ред. В. Д. Садовский. - М.: Наука, 1992. 161 с.].
3. Shape Memory NiTi Alloys.. Part 1. Structure, Phase Transformation, and Properties. Ed. V. G. Pushin: Ekaterinburg: УrО RAS, 2006. - 414 p. (in Russian) [Сплавы никелида титана с памятью формы. Ч.1. Структура, фазовые превращения и свойства. Под ред. В. Г. Пушина: Екатеринбург: УрО РАН, 2006. 414 с.].
4. N. N. Kuranova, A. V. Pushin, V. G. Pushin, A. V. Korolev, N. I. Kourov. Tech. Phys. Lett. 42, 376 (2016).
5. V. G. Pushin, N. N. Kuranova, A. V. Pushin, A. N. Uksusnikov, and N. I. Kourova. Tech. Phys. 61 (7), 1009 (2016).
6. E. S. Belosludtseva, N. N. Kuranova, N. I. Kourov, V. G. Pushin, A. N. Uksusnikov. Tech. Phys. 60, 1330 (2015).
7. I. I. Musabirov, I. Z. Sharipov, R. R. Mulyukov. Russ. Phys. J. 58 (6), 745 (2015).
8. I. I. Musabirov, I. M. Safarov, R. R. Mulyukov, I. Z. Sharipov, V. V. Koledov. Letters on Materials. 4 (4), 265 (2014).
9. M. P. Kashchenko, V. G. Chashchina. Met. Sci. Heat Treat. 55 (11-12), 643 (2014).
10. M. P. Kashchenko, V. G. Chashchina. Russ. Phys. J. 56 (7), 807 (2013).
11. M. P. Kashchenko, V. G. Chashchina. Phys. Mesomech. 19 (3), 107 (2016).
12. R. I. Babicheva, J. A. Baimova, S. V. Dmitriev, V. G. Pushin. Letters on Materials. 5 (4), 359 (2015).
13. K. R. Morrison, M. J. Cherukara, H. Kim, A. Strachan. Acta Mater. 95, 37 (2015).
14. C. Ni, H. Ding, X. J. Jin. J. Alloys Compd. 546, 1 (2013).
15. S. Kazanc, F. A. Celik, S. Ozgen. J. Phys. Chem. Solids. 74, 1836 (2013).
16. T. Suzuki, M. Shimno, K. Otsuka, X. Ren, A. Saxena. J. Alloys Compd. 577S, S113 (2013).
17. B. Wang, E. Sak-Saracino, N. Gunkelmann, H. M. Urbassek. Comp. Mater. Sci. 82, 399 (2014).
18. C. Tatar, S. Kazanc. Current Applied Physics. 12, 98 (2012).
19. A. R. Kuznetsov, Yu. N. Gornostyrev, M. I. Katsnelson, A. V. Trefilov. Mater. Sci Eng. A309-310 168 (2001).
20. I. N. Kar’kin, Yu. N. Gornostyrev, L. E. Kar’kina. Phys. Solid State. 52, 431 (2010).
21. Y. N. Gornostyrev, I. N. Kar’kin, L. E. Kar’kina. Phys. Solid State. 53, 1388 (2011).
22. J. A. Baimova, R. I. Babicheva, A. V. Lukyanov, V. G. Pushin, D. V. Gunderov, S. V. Dmitriev. Rev. Adv. Mater. Sci. 47, 86 (2016).
23. O. Kastner, G. Eggeler, W. Weiss, G. J. Ackland. J. Mech. Phys. Solids. 59, 1888 (2011).
24. K. Saitoh, W. K. Liu. Comp. Mater. Sci. 46, 531 (2009).
25. T. Suzuki, M. Shimono, S. Takeno. Phys. Rev. Lett. 82, 1474 (1999).
26. O. Kastner. Continuum Mech. Thermodyn. 15, 487 (2003).
27. O. Kastner. Continuum Mech. Thermodyn. 18, 63 (2006).
28. M. D. Starostenkov, M. S. Aksenov, G. M. Poletaev, R. Y. Rakitin. Fundamentalnie problemi sovremennogo materialovedeniya. 3 (2), 16 (2006).
29. G. M. Poletaev, E. S. Medvedeva, I. V. Zorya, D. V. Novoselova, M. D. Starostenkov. Russ. Phys. J. 60 (2), 201 (2017).
30. A. A. Kistanov, R. T. Murzaev, S. V. Dmitriev, V. I. Dubinko, V. V. Khizhnyakov. JETP Letters. 99 (6), 353 (2014).
31. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, M. G. Velarde. Phys. Usp. 59, 446 (2016).
32. S. V. Dmitriev, A. P. Chetverikov, M. G. Velarde, Phys. Stat. Solidi b 252 (7), 1682 (2015).
33. M. G. Velarde, A. P. Chetverikov, W. Ebeling, S. V. Dmitriev, V. D. Lakhno, European Physical Journal B 89 (10), 233 (2016).
34. A. A. Kistanov, S. V. Dmitriev, A. P. Chetverikov, M. G. Velarde, European Physical Journal B, 87 (9), 5 (2014).
35. R. T. Murzaev, S. V. Dmitriev. Fundamentalnie problemi sovremennogo materialovedeniya. 10 (3), 334 (2013) (in Russian) [Мурзаев Р. Т., Дмитриев С. В. Фундаментальные проблемы современного материаловедения. 2013. т. 10, № 3, с. 334.].
36. M.I. Alymov, V.S. Trofimov, E.V. Petrov. Letters on Materials 7(1), 26 - 28 (2017). (in Russian) [Алымов М.И., Трофимов В.С., Петров Е.В. Письма о материалах. 7(1), 26 - 28 (2017)]. Crossref

Cited by (12)

1.
H. Lu, C. Chen, N. Tsou. Materials. 12(1), 57 (2018). Crossref
2.
M. Wang, S. Jiang, Y. Zhang. Materials. 11(11), 2334 (2018). Crossref
3.
F. Celik, H. Yazgil. J. Korean Phys. Soc. 76(5), 406 (2020). Crossref
4.
L. Safina, J. Baimova, K. Krylova, R. Murzaev, R. Mulyukov. Lett. Mater. 10(3), 351 (2020). Crossref
5.
T. Ruan, B. Wang, C. Xu, Y. Jiang. Crystals. 10(10), 855 (2020). Crossref
6.
R. Babicheva, A. Semenov, S. Dmitriev, K. Zhou. Lett. Mater. 9(2), 162 (2019). Crossref
7.
Liliya R. Safina, Julia A. Baimova, Radik R. Mulyukov. Mech Adv Mater Mod Process. 5(1) (2019). Crossref
8.
Liliya R. Safina, Julia A. Baimova, Karina A. Krylova, Ramil T. Murzaev, Srepan A. Shcherbinin, Radik R. Mulyukov. Phys. Status Solidi RRL. 15(11), 2100429 (2021). Crossref
9.
S. Liu, Y. Lin, L. Han, X. Wang, G. Zhao, G. Wang. Computational Materials Science. 199, 110733 (2021). Crossref
10.
M. Kashchenko, N. Kashchenko, V. Chashchina. IOP Conf. Ser.: Mater. Sci. Eng. 1213(1), 012006 (2022). Crossref
11.
L. Safina, R. Murzaev, K. Krylova. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012054 (2020). Crossref
12.
S. Moravej, A. Taghibakhshi, H. Nejat Pishkenari, J. Arghavani. Journal of Intelligent Material Systems and Structures. 33(4), 604 (2022). Crossref

Similar papers