Effect of temperature and Stone-Thrower-Wales defects on strength of carbon nanotubes

K.A. Bukreeva, A.M. Iskandarov, S.V. Dmitriev, Y. Umeno show affiliations and emails
Accepted  27 November 2013
This paper is written in Russian
Citation: K.A. Bukreeva, A.M. Iskandarov, S.V. Dmitriev, Y. Umeno. Effect of temperature and Stone-Thrower-Wales defects on strength of carbon nanotubes. Lett. Mater., 2013, 3(4) 318-321
BibTex   https://doi.org/10.22226/2410-3535-2013-4-318-321

Abstract

Critical tensile strain attainable in carbon nanotubes (CNT) is estimated by means of molecular dynamics simulations at various temperatures and for two types of CNT – «zigzag» and «armchair». Effect of Stone-Thrower-Wales (STW) de-fects on critical tensile strain is also examined. It is estab-lished that at zero temperature critical strain of defect-free «armchair» CNT is 66% higher than that of «zigzag» CNT, while at 2400 K this difference decreases down to 16%. Sig-nificant influence of STW defects on critical strain is re-ported only for temperatures close to 0 K.

References (21)

1. B. Peng, M. Locascio, P. Zapol, S.Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa. Nat Nano, 3(10), 626 (2008).
2. D. Qian, E.C. Dickey, R. Andrews, T. Rantell. Appl PhysLett. 76(20), 2868-70 (2000).
3. V. Vijayaraghavan, C.H. Wong. Phys. E: Low-dimensionalSystems and Nanostructures. 54, 206 (2013).
4. N. Toshiaki, E. Marinobu. Carbon, 42, 2147 (2004).
5. A.M. Iskandarov, K.A. Bukreeva, Y. Umeno, S.V. Dmitriev.Letters on materials. 2, 253 (2012) (inRusian) [А.М.Искандаров, К.А. Букреева, Y. Umeno, С.В. Дмитриев.Письма о материалах. 2, 143 (2011)].
6. R.I. Babicheva, K.A. Bukreeva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov. Intermetallics. 43, 171 (2013).
7. K.A. Bukreeva, R.I. Babicheva, S.V. Dmitriev, K. Zhou, R.R. Mulyukov. JETP Letters. 98 (2), 91 (2013).
8. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima.Nature. 430(7002), 870 (2004).
9. P. Thrower jr. in Chemistry and Physics of Carbon, editedby Walker P. L..V.5 (Dekker, New York), 262 (1969).
10. A. Stone, D. Wales. Chem. Phys. Lett.. 128(1), 501, (1986).
11. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski. Physical Review B. 70(24), 245416(2004).
12. S.L. Mielke, D. Troya, S. Zhang, J. Li, S. Xiao, R. Car, R.S. Ruoff, G.C. Schatz, T. Belytschko. Chemical PhysicsLetters. 390(4-6), 413 (2004).
13. Q. Wang, W.H. Duan, N.L. Richards, K.M. Liew. PhysicalReview B. 75, (20), 201405 (2007).
14. C. Wei, K. Cho, D. Srivastava. Phys. Rev. B. 67, 115407(2003).
15. J.A. Baimova, L. Bo, S.V. Dmitriev, K. Zhou, A.A. Nazarov.EPL. 103, 46001 (2013).
16. http://lammps.sandia.gov/.
17. S. Stuart, A. Tutein, J. Harrisonю J. Chem. Phys. 112, 6472(2000).
18. J. Tersoff. J. Phys. Rev. Lett. 61, 2879 (1988).
19. D. W Brenner. Phys. Rev. B. 42, 9458 (1990).
20. M.A.N. Dewapriya, A.S. Phani, R.K.N.D. Rajapakse.Proceedings of the 23rd CANCAM, Vancouver, Canada(2011).
21. J.R. Xiao, J. Staniszewski, J.W. Gillespie. Mater.Scin.Eng.: A 527, Is.3 715 (2010).

Cited by (2)

1.
J. A. Baimova, S. V. Dmitriev. Russ Phys J. 58(6), 785 (2015). Crossref
2.
P. Polyakova, L. Galiakhmetova, R. Murzaev, D. Lisovenko, J. Baimova. Lett. Mater. 13(2), 171 (2023). Crossref

Similar papers