Computer modeling of oxygen migration accompanying aluminum production

A. Galashev, O. Rakhmanova

Abstract

The movement of oxygen ions in the Al melts under action of a constant electric field is studied by molecular dynamics. The speed and intensity of oxygen ions movement across the melts depends on their concentration.The behavior of oxygen ions in the Al melts under action of a constant electric field was studied by molecular dynamics. The rate of moving up of O2- ions from the graphite wall to the melt surface increases and the time of the first ion reaching the surface decreases with increase in O2- concentration. When the number of ions less than 90 the small ion clusters consisting of only a few oxygen ions are often formed on the Al melts surface. In the case when the number of ions is 90, the vertical chain extending from top to bottom of the molecular dynamics cell is formed. The trajectory of oxygen ion is complicated. Before reaching the surface of the melts, ion performs random motion in the vicinity of the bottom of the basic cell, and reaching the surface the ion moves randomly in a thin surface layer of the cell. Al atomic selfdiffusion coefficient and internal energy of the Al melts increase while O2- ion selfdiffusion coefficient decreases with increasing the concentration of ions in the system. The intensity of the peaks of the partial radial distribution functions increases with growing concentration of oxygen ions in the melts. Picture of the oxygen ions final location may be directly opposite depending on the boundary conditions and their application sequence.

References (22)

1.
S. Hasani, M. Panjepour, M. Shamanian. Oxid. Met. 78, 179 – 195 (2012). DOI: 10.1007/s11085‑012‑9299‑1
2.
S. Hong, A. C. T. van Duin. J. Phys. Chem. C. 120, 9464 – 9474 (2016). DOI: 10.1021/acs.jpcc.6b00786
3.
L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer. J. Appl. Phys. 92, 1649 – 1656 (2002). DOI: 10.1063/1.1491591
4.
D. Krewski, R. A. Yokel, E. Nieboer, D. Borchelt, J. Cohen, J. Harry, S. Kacew, J. Lindsay, A. M. Mahfouz, V. Rondeau. J. Toxicol Environ Health B Crit Rev. 10, 1 – 269 (2007). DOI: 10.1080/10937400701597766
5.
W. M. Zhong, G. L’Esperance, M. Suery. Metall. Mater. Trans. A. 26, 2625 – 2635 (1995). DOI: 10.1007/BF02669420
6.
P. N. Anyalebechi. Scr. Metall. Mater. 33, 1209 – 1216 (1995). DOI: 10.1016 / 0956-716X(95)00373-4
7.
A. de Kanti, A. Mukhopadhyay, S. Sen, I. K. Puri. Modelling Simul. Mater. Sci. Eng. 12, 389 – 405 (2004). DOI: 10.1088/0965-0393/12/3/003
8.
M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, S. Han. J. Mater. Res. 20, 208 – 218 (2005). DOI: 10.1557/JMR.2005.0024
9.
J. Tersoff. Phys. Rev. Lett. 61, 2879 – 2882 (1988). DOI: 10.1103/PhysRevLett.61.2879
10.
Y. M. Kim, S.‑C. Kim. J. Korean. Phys. Soc. 40, 293 – 299 (2002). DOI: 10.3938/jkps.40.293
11.
R. B. Bird, W. F. Stewart, E. N. Ligthfoot. Transport Phenomena. New York, Wiley. (2002) 866 p.
12.
A. E. Galashev. Tech. Phys. 59, 467 – 473 (2014). DOI: 10.1134/S1063784214040112
13.
S. A. Nosé. J. Chem. Phys. 81, 511 – 519 (1984). DOI: 10.1063/1.447334
14.
S. Plimpton. J. Comp. Phys. 117, 1 – 19 (1995). DOI: 10.1006/jcph.1995.1039
15.
F. Kargl, E. Sondermann, H. Weis, A. Meyer. High Temp. High Press. 42, 3 – 21 (2013).
16.
Y. Rosenfeld. J. Phys. Condens. Matter. 11, 5415 – 5427 (1999). DOI: 10.1088/0953-8984/11/28/303
17.
A. E. Galashev, O. R. Rakhmanova. High. Temp., 52, 374 – 380 (2014). DOI: 10.1134/S0018151X14030110
18.
C. B. Alcock, T. N. Belford. Trans. Faraday Soc. 60, 822 – 835 (1964). DOI: 10.1039/TF9646000822
19.
T. N. Belford, C. B. Alcock. Tran. Faraday Soc. 61, 443 – 453 (1965). DOI: 10.1039/TF9656100443
20.
H. Rickert, H. Wagner. Electrochim. Acta. 11, 83 – 91 (1966). DOI: 10.1016/0013-4686(66)85009-0
21.
S. Otsuka, Z. Kozuka. Met Trans B. 10, 565 – 574 (1979). DOI: 10.1007/BF02662559
22.
A. Kishimoto, A. Wada, T. Michimoto, T. Furukawa, K. Aoto, T. Oishi. Met. Trans. B. 47, 122 – 128 (2006). DOI: 10.1007/BF02662559