Computer modeling of oxygen migration accompanying aluminum production

A. Galashev, O. Rakhmanova show affiliations and emails
Received: 11 July 2017; Revised: 11 September 2017; Accepted: 24 September 2017
Citation: A. Galashev, O. Rakhmanova. Computer modeling of oxygen migration accompanying aluminum production. Lett. Mater., 2017, 7(4) 373-379
BibTex   https://doi.org/10.22226/2410-3535-2017-4-373-379

Abstract

The movement of oxygen ions in the Al melts under action of a constant electric field is studied by molecular dynamics. The speed and intensity of oxygen ions movement across the melts depends on their concentration.The behavior of oxygen ions in the Al melts under action of a constant electric field was studied by molecular dynamics. The rate of moving up of O2- ions from the graphite wall to the melt surface increases and the time of the first ion reaching the surface decreases with increase in O2- concentration. When the number of ions less than 90 the small ion clusters consisting of only a few oxygen ions are often formed on the Al melts surface. In the case when the number of ions is 90, the vertical chain extending from top to bottom of the molecular dynamics cell is formed. The trajectory of oxygen ion is complicated. Before reaching the surface of the melts, ion performs random motion in the vicinity of the bottom of the basic cell, and reaching the surface the ion moves randomly in a thin surface layer of the cell. Al atomic selfdiffusion coefficient and internal energy of the Al melts increase while O2- ion selfdiffusion coefficient decreases with increasing the concentration of ions in the system. The intensity of the peaks of the partial radial distribution functions increases with growing concentration of oxygen ions in the melts. Picture of the oxygen ions final location may be directly opposite depending on the boundary conditions and their application sequence.

References (22)

1. S. Hasani, M. Panjepour, M. Shamanian. Oxid. Met. 78, 179 - 195 (2012). Crossref
2. S. Hong, A. C. T. van Duin. J. Phys. Chem. C. 120, 9464 - 9474 (2016). Crossref
3. L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer. J. Appl. Phys. 92, 1649 - 1656 (2002). Crossref
4. D. Krewski, R. A. Yokel, E. Nieboer, D. Borchelt, J. Cohen, J. Harry, S. Kacew, J. Lindsay, A. M. Mahfouz, V. Rondeau. J. Toxicol Environ Health B Crit Rev. 10, 1 - 269 (2007). Crossref
5. W. M. Zhong, G. L’Esperance, M. Suery. Metall. Mater. Trans. A. 26, 2625 - 2635 (1995). Crossref
6. P. N. Anyalebechi. Scr. Metall. Mater. 33, 1209 - 1216 (1995). Crossref
7. A. de Kanti, A. Mukhopadhyay, S. Sen, I. K. Puri. Modelling Simul. Mater. Sci. Eng. 12, 389 - 405 (2004). Crossref
8. M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, S. Han. J. Mater. Res. 20, 208 - 218 (2005). Crossref
9. J. Tersoff. Phys. Rev. Lett. 61, 2879 - 2882 (1988). Crossref
10. Y. M. Kim, S.-C. Kim. J. Korean. Phys. Soc. 40, 293 - 299 (2002). Crossref
11. R. B. Bird, W. F. Stewart, E. N. Ligthfoot. Transport Phenomena. New York, Wiley. (2002) 866 p.
12. A. E. Galashev. Tech. Phys. 59, 467 - 473 (2014). Crossref
13. S. A. Nosé. J. Chem. Phys. 81, 511 - 519 (1984). Crossref
14. S. Plimpton. J. Comp. Phys. 117, 1 - 19 (1995). Crossref
15. F. Kargl, E. Sondermann, H. Weis, A. Meyer. High Temp. High Press. 42, 3 - 21 (2013).
16. Y. Rosenfeld. J. Phys. Condens. Matter. 11, 5415 - 5427 (1999). Crossref
17. A. E. Galashev, O. R. Rakhmanova. High. Temp., 52, 374 - 380 (2014). Crossref
18. C. B. Alcock, T. N. Belford. Trans. Faraday Soc. 60, 822 - 835 (1964). Crossref
19. T. N. Belford, C. B. Alcock. Tran. Faraday Soc. 61, 443 - 453 (1965). Crossref
20. H. Rickert, H. Wagner. Electrochim. Acta. 11, 83 - 91 (1966). Crossref
21. S. Otsuka, Z. Kozuka. Met Trans B. 10, 565 - 574 (1979). Crossref
22. A. Kishimoto, A. Wada, T. Michimoto, T. Furukawa, K. Aoto, T. Oishi. Met. Trans. B. 47, 122 - 128 (2006). Crossref

Similar papers