Physical Aspects of the Lithium Ion Interaction with the Imperfect Silicene Located on the Silver Substrate

A. Galashev, O. Rachmanova, K. Ivanichkina, Y. Zaikov show affiliations and emails
Received 20 September 2018; Accepted 19 October 2018;
Citation: A. Galashev, O. Rachmanova, K. Ivanichkina, Y. Zaikov. Physical Aspects of the Lithium Ion Interaction with the Imperfect Silicene Located on the Silver Substrate. Lett. Mater., 2018, 8(4) 463-467
BibTex   https://doi.org/10.22226/2410-3535-2018-4-463-467

Abstract

Silicene is a very promising material for the future microelectronics. The article is devoted to the molecular-dynamic investigation of the behavior of a two-layer silicene located on a silver substrate and interacting with a lithium ion.Epitaxy of Si on a silver substrate is the main method of silicene obtaining. Silicene does not separate from the substrate. In the present paper, the possibility of silicene using on the silver substrate as an anode for lithium-ion batteries is studied by the method of molecular dynamics. Structural and mechanical effects arising from the motion of the Li+ ion through a planar silicene perfect and defective channel formed by a two-layer silicene are studied. Generally, the defect stability and silicene sheet integrity are independent of the Ag(001) or Ag(111) substrate type. The transverse vibrations of Si atoms in the channel have a significant effect on the motion of lithium ions. This effect is taken into account by using an interference factor which describes the slowing down of the motion of the Li+ ion in the channel. The dependence of this coefficient on the size of vacancy defects in silicene is determined. The presence of the substrate makes this dependence less important. The stress distribution in the defective silicene while driving lithium ion along the flat silicene channel is calculated. The strongest stresses in the silicene are created by forces of the direction perpendicular to the strength of the external electric field. These forces dominate in the silicene channel placed on the substrates of both types.

References (19)

1. G. A. Tritsaris, E. Kaxiras, S. Meng, E. Wang. NanoLett. 13(5), 2258 (2013). Crossref
2. G. A. Tritsaris, K. Zhao, O. U. Okeke, E. Kaxiras. J. Phys. Chem. C. 116(42), 22212 (2012). Crossref
3. J. Huang, H.-J. Chen, M.-S. Wu, G. Liu, C.-Y. Ouyang, B. Xu. Chin. Phys. Lett. 30(1), 017103(1-5) (2013). Crossref
4. V. O. Ozcelik, H. H. Gured, S. Ciraci. Phys. Rev. B. 88(4), 045440(1-6) (2013). Crossref
5. J. F. Guo, J. F. Zhang, H. S. Liu, Q. F. Zhang, J. J. Zhao. Nanoscale 5(20), 9785 (2013). Crossref
6. H. Jamgotchain, Y. Colignon, B. Ealet, B. Parditka, J.-Y. Hoarau, C. Girardeaux, B. Aufray, J.-P. Bibérian. J. Phys.: Conf. Ser. 491(1), 012001(1-7) (2014). Crossref
7. G. R. Berdiyorov, F. M. Peeters. RSC Adv. 4(3), 1133 (2014). Crossref
8. G. A. Tritsaris, E. Kaxiras, S. Meng, E. Wang. NanoLett. 13(5), 2258 (2013). Crossref
9. O. R. Rakhmanova, A. Y. Galashev. Rus. J. Phys. Chem. A. 91(5), 921 (2017). Crossref
10. J. Tersoff. Phys. Rev. B. 49(23), 16349 (1994). Crossref
11. R. Yu, P. Zhai, G. Li, L. Liu. J. Electron. Mater. 41(6), 1465 (2012). Crossref
12. S. K. Das, D. Roy, S. J. Sengupta. Phys. F: Metal. Phys. 7(1), 5 (1977). Crossref
13. K.-N. Chiang, C.-Y. Chou, C.-J. Wu, C.-J. Huang, M.-C. Yew. Comp. Modell. Eng. Sci. 37(1), 85 (2008). Crossref
14. T. Shirai, T. Shirasawa, T. Hirahara, N. Fukui, T. Takahashi, S. Hasegawa. Phys Rev B. 89(24), 241403(1-6) (2014). Crossref
15. S. Kono, H. Sakurai, T. Sagawa, Surf. Sci. Lett. 130(1), L299 (1983). Crossref
16. Y.-P. Wang, H.-P. Cheng, Phys. Rev. B. 87(24), 245430 (2013). Crossref
17. A. E. Galashev. Phys. Met. Metallogr. 117(3), 246 (2016). Crossref
18. S. J. Plimpton. Comp. Phys. 117(1), 1 (1995). Crossref
19. A. E. Galashev, Yu. P. Zaikov, R. G. Vladykin. Rus. J. Electrochem. 52(10), 966 (2016). Crossref

Cited by (10)

1.
Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong, J. Feng, Y. Qian. Energy Storage Materials. 32, 115 (2020). Crossref
2.
Alexander Y. Galashev, Ksenia A. Ivanichkina, Alexey S. Vorob'ev, Oksana R. Rakhmanova, Konstantin P. Katin, Mikhail M. Maslov. International Journal of Hydrogen Energy. 46(32), 17019 (2021). Crossref
3.
A. E. Galashev, O. R. Rakhmanova. Glass Phys Chem. 46(4), 321 (2020). Crossref
4.
Vladimir A. Isaev, Olga V. Grishenkova, Yury P. Zaikov. J Solid State Electrochem. 25(2), 689 (2021). Crossref
5.
A. Galashev, A. Vorob'ev. Materials. 14(21), 6649 (2021). Crossref
6.
Alexander Y. Galashev. Solid State Ionics. 357, 115463 (2020). Crossref
7.
Alexander Y. Galashev, Oksana R. Rakhmanova. ChemPhysChem. 23(18) (2022). Crossref
8.
Alexander Y. Galashev, Alexey S. Vorob'ev. Physics Letters A. 408, 127487 (2021). Crossref
9.
Alexander Y. Galashev, Kseniya A. Ivanichkina, Oksana R. Rakhmanova. Computational Materials Science. 200, 110771 (2021). Crossref
10.
A. E. Galashev. Russ. J. Phys. Chem. B. 17(1), 113 (2023). Crossref

Similar papers