Onset of plastic deformation in non-equiatomic fcc CoCrFeMnNi high-entropy alloys under high-speed loading

A.V. Korchuganov show affiliations and emails
Received: 25 April 2018; Revised: 19 June 2018; Accepted: 26 June 2018
This paper is written in Russian
Citation: A.V. Korchuganov. Onset of plastic deformation in non-equiatomic fcc CoCrFeMnNi high-entropy alloys under high-speed loading. Lett. Mater., 2018, 8(3) 311-316
BibTex   https://doi.org/10.22226/2410-3535-2018-3-311-316

Abstract

The main mechanisms of plastic deformation under high-speed compression and tension of CoCrFeMnNi single crystals are the formation of stacking faults and bands with a hcp lattice, the subsequent twinning occurs only upon stretching. Deviation from the equiatomic composition significantly improves the physical and mechanical properties of this alloy.On the basis of molecular dynamics computer simulation, the features of plastic deformation nucleation and evolution under mechanical loading of CoCrFeMnNi high-entropy alloy single-crystals with different stoichiometric compositions were studied. To obtain thermodynamically equilibrium distribution of chemical elements the relaxation of samples was carried out using the Monte Carlo method. Calculations showed that increase in Co and Ni fraction or decrease in Cr, Fe, and Mn fraction leads to increase of Young's modulus of the alloy. Based on these calculations, two samples with different stoichiometric compositions were selected and investigated: Co30Cr30Fe10Mn10Ni20 (Co30Cr30-sample) and Co10Cr10Fe30Mn30Ni20 (Fe30Mn30-sample), with high and low Young's modulus, respectively. A comparison was also made with the equiatomic alloy. Regardless of the composition, the onset of plasticity in CoCrFeMnNi single-crystals is realized through the formation and growth of intrinsic stacking faults and bands with hcp lattice. The mechanism for their formation is the rearrangement of the lattice from fcc to bcc and then to hcp structure. Structural and mechanical response of the samples differ substantially for different alloy compositions, types and rates of mechanical loading. Nucleation and growth of stacking faults and hcp bands are suppressed in Co30Cr30-sample, therefore, its yield stress is more than twice the values for Fe30Mn30-sample. After the formation of these defects twinning takes place at tension in all samples and it is not observed at compression. Plasticity mechanisms of high-entropy alloy and fcc nickel are in many respects similar. The obtained results allowed establishing a relationship between the stoichiometric composition and the atomic mechanisms of plastic deformation of high-entropy alloys under various types of mechanical loading.

References (27)

1. D. B. Miracle, O. N. Senkov. Acta Mater. 122, 448 (2017). Crossref
2. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie. Science. 345(6201), 1153 (2014). Crossref
3. T. Fujieda, H. Shiratori, K. Kuwabara, M. Hirota, T. Kato, K. Yamanaka, Yu. Koizumi, A. Chiba, S. Watanabe. Mater. Lett. 189, 148 (2017). Crossref
4. S. Guo. Mater. Sci. Technol. 31(10), 1223 (2015). Crossref
5. K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, D. Raabe. Mater. Sci. Eng. A. 648, 183 (2015). Crossref
6. D. Miracle, B. Majumdar, K. Wertz, S. Gorsse. Scripta Mater. 127, 195 (2017). Crossref
7. O. N. Senkov, J. D. Miller, D. B. Miracle, C. Woodward. Calphad. 50, 32 (2015). Crossref
8. H. Y. Diao, R. Feng, K. A. Dahmen, P. K. Liaw. Curr. Opin. Solid State Mater. Sci. 21(5), 252 (2017). Crossref
9. W. Fang, R. Chang, X. Zhang, P. Ji, X. Wang, B. Liu, J. Li, X. He, X. Qu, F. Yin. Mater. Sci. Eng. A. 723, 221 (2018). Crossref
10. I. Toda-Caraballo. Scripta Mater. 127, 113 (2017). Crossref
11. J. Li, Q. Fang, B. Liu, Y. W. Liu, Y. Liu. RSC Adv. 6(80), 76409 (2016). Crossref
12. A. Sharma, P. Singh, D. D. Johnson, P. K. Liaw, G. Balasubramanian. Sci. Rep. 6, 31028 (2016). Crossref
13. B. Schuh, F. Mendez-Martin, B. Völker, E. George, H. Clemens, R. Pippan, A. Hohenwarter. Acta Mater. 96, 258 (2015). Crossref
14. Z. Li, C. C. Tasan, H. Springer, B. Gault, D. Raabe. Sci. Rep. 7, 40704 (2017). Crossref
15. J. Y. Ko, S. I. Hong. J. Alloys Compd. 743, 115 (2018). Crossref
16. I. F. Golovnev, E. I. Golovneva, L. A. Merzhievsky, V. M. Fomin. Phys. Mesomech. 16(4), 294 (2013). Crossref
17. S. V. Dmitriev, M. P. Kashchenko, J. A. Baimova, R. I. Babicheva, D. V. Gunderov, V. G. Pushin. Letters on materials. 7(4), 442 (2017). (in Russian) [С. В. Дмитриев, М. П. Кащенко, Ю. А. Баимова, Р. И. Бабичева, Д. В. Гундеров, В. Г. Пушин. Письма о материалах. 7(4), 442 (2017).]. Crossref
18. S. Plimpton. J. Comput. Phys. 117(1), 1 (1995). Crossref
19. W.-M. Choi, Y. Kim, D. Seol, B.-J. Lee. Comput. Mater. Sci. 130, 121 (2017). Crossref
20. C. Wu, B.-J. Lee, X. Su. Calphad. 57, 98 (2017). Crossref
21. W.-M. Choi, Y. H. Jo, S. S. Sohn, S. Lee, B.-J. Lee. npj Comput. Mater. 4(1), 1 (2018). Crossref
22. B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, L. Zepeda-Ruiz Phys. Rev. B. 85(18), 184203 (2012). Crossref
23. J. D. Honeycutt, H. C. Andersen. J. Phys. Chem. 91(19), 4950 (1987). Crossref
24. H. N. Jarmakani, E. M. Bringa, P. Erhart, B. A. Remington, Y. M. Wang, N. Q. Vo, M. A. Meyers. Acta Mater. 56(19), 5584 (2008). Crossref
25. Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, D. Raabe. Acta Mater. 136, 262 (2017). Crossref
26. Z. Li, D. Raabe. Mater. Chem. Phys. 210, 29 (2018). Crossref
27. L. Patriarca, A. Ojha, H. Sehitoglu, Y. I. Chumlyakov. Scripta Mater. 112, 54 (2016). Crossref

Cited by (3)

1.
Y. Grinyaev. AIP Conference Proceedings. 2051, 020103 (2018). Crossref
2.
J. Hou, Q. Li, C. Wu, L. Zheng. Materials. 12(7), 1010 (2019). Crossref
3.
I. Alabd Alhafez, Carlos J. Ruestes, Eduardo M. Bringa, Herbert M. Urbassek. Journal of Alloys and Compounds. 803, 618 (2019). Crossref

Similar papers