Computer study of the structure and thermal stability of a monolayer MoS2 film on a diamond substrate

A.Y. Galashev, K.A. Ivanichkina show affiliations and emails
Received 23 October 2018; Accepted 13 December 2018;
Citation: A.Y. Galashev, K.A. Ivanichkina. Computer study of the structure and thermal stability of a monolayer MoS2 film on a diamond substrate. Lett. Mater., 2019, 9(3) 270-275
BibTex   https://doi.org/10.22226/2410-3535-2019-3-270-275

Abstract

In the present work, by the molecular dynamics method, the stability of single-layer MoS2 in the temperature range of 250-550 K was studied.MoS2 is a promising candidate for next-generation electric and optoelectronic devices. Using chemical vapor deposition allows to obtain high-quality MoS2 monolayers on a diamond substrate. However, it is not clear how firmly the MoS2 monolayer is held on a diamond substrate at a high temperature and how the structure of the MoS2 monolayer changes after its deposition on the diamond substrate and subsequent heating on it. In this paper, the molecular dynamics method is used to study the stability of single-layer MoS2 in the temperature range of 250–550 K. The molybdenum disulfide film on a diamond substrate structure is studied by constructing Voronoi polyhedra. Polyhedra were built around Mo atoms and faces are formed by neighboring S atoms. The distributions of polyhedrons by the number of faces were found. These distributions were also calculated for truncated polyhedra obtained by eliminating small geometric elements. A comparison of the obtained statistical distributions for a MoS2 monolayer on a diamond substrate with the corresponding characteristics of an autonomous monolayer MoS2 indicates a significant change in the monolayer structure. This change is a result of its deposition on the diamond substrate. When the temperature reaches 550 K, the MoS2 film is completely separated from the substrate. There is a singularity near this temperature, which indicates the thermal instability of the system under investigation.

References (33)

1. K. K. Kam, B. A. Parkinson. J. Phys. Chem. 86 (4), 463 (1982). Crossref
2. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Phys. Rev. Lett. 105, 136805 (2010). Crossref
3. V. M. Pereira, A. H. Castro Neto. Phys. Rev. Lett. 103, 046801 (2009). Crossref
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Nature. 438, 197 (2005). Crossref
5. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Nat. Nanotech. 7 (11), 699 (2012). Crossref
6. M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, H. Zhang. Nat. Chem. 5 (4), 263 (2013). Crossref
7. S. Hong, A. Krishnamoorthy, P. Rajak, S. Tiwari, M. Misawa, F. Shimojo, R. K. Kalia, A. Nakano, P. Vashishta. Nano Lett. 17 (8), 4866 (2017). Crossref
8. K. Wang, S. Zhou, Y. Zhou, J. Ren, L. Li, Y. Lan. Int. J. Electrochem. Sci. 13, 10766 (2018). Crossref
9. K. Wang, J. Pang, L. Li, S. Zhou, Y. Li, T. Zhang. Front. Chem. Sci. Eng. 12(3), 376 (2018). Crossref
10. J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J. P. Lemmon. Chem. Mater. 22 (16), 4522 (2010). Crossref
11. T. Cheiwchanchamnangij, W. R. Lambrecht. Phys. Rev. B. 85, 205302 (2012). Crossref
12. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Nat. Nanotech. 6, 147 (2011). Crossref
13. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang. ACS Nano. 6 (1), 74 (2012). Crossref
14. Q. Peng, S. De. Phys. Chem. Chem. Phys. 15, 19427 (2013). Crossref
15. S. A. Linnik, A. V. Gaydaychuk, E. Y. Baryshnikov. Mater. Today: Proceedings. 3S, 138 (2016). Crossref
16. J. H. Gong, S. X. Lin, W. Li, J. Gao. Appl. Mech. Mater. 229 - 231, 74 (2012). Crossref
17. S. J. Plimpton. Comp. Phys. 117, 1 (1995). Crossref
18. J-W. Jiang, H-S. Park, T. Rabczuk. J. Appl. Phys. 114, 064307 (2013). Crossref
19. P. Nicolini, T. Polcar. Comp. Mater. Sci. 115, 158 (2016). Crossref
20. Y. Jing, E. O. Ortiz-Quiles, C. R. Cabrera, Z. Chen, Z. Zhou. Electrochim. Acta. 147, 392 (2014). Crossref
21. A. E. Galashev, Yu. P. Zaikov. Rus. J. Electrochem. 51 (9), 867 (2015). Crossref
22. A. E. Galashev, O. R. Rakhmanova. High Temp. 54 (1), 11 (2016). Crossref
23. A. E. Galashev, K. A. Ivanichkina. Rus. J. Phys. Chem. A. 91 (12), 2448 (2017). Crossref
24. A. E. Galashev, O. R. Rakhmanova, O. A. Novruzova. High Temp. 49 (2), 193 (2011). Crossref
25. A. E. Galashev, O. R. Rakhmanova, O. A. Novruzova. High Temp. 49 (4), 528 (2011). Crossref
26. A. E. Galashev, O. R. Rakhmanova. High Temp. 53 (3), 374 (2014). Crossref
27. V. P. Skripov, A. E. Galashev. Rus. Chem. Rev. 52, 97 (1983). Crossref
28. O. A. Novruzova, O. R. Rakhmanova, A. E. Galashev. Rus. J. Phys. Chem. A. 81 (11), 1825 (2007). Crossref
29. V. K. Semenchenko. Selected Chapters of Theoretical Physki. Moscow, Prosveschenie (1966) 396 p. (in Russian). [В.К. Семенченко. Избранные главы теоретической физики. Москва, Просвещение (1966) 396 с.].
30. O. Knacke, O. Kubashewski, K. Hesselman. Termochemical properties of inorganic substances, 2nd. edn. Verlag, Springer (1991) 861 p. Crossref
31. P. G. Neudeck, D. J. Spry, L. Y. Chen, R. S. Okojie, G. M. Beheim, R. D. Meredith, T. L. Ferrier. Mater. Sci. Forum. 556 - 557, 831 (2007). Crossref
32. E.A. Guggenheim. Modern thermodynamics by the methods of Willard Gibbs. Methuen & Co., Great Britain (1933) 206 p.
33. J. J. Gafner, S. Gafner, I. Zamulin, L. Redel, V. M. Samsonov.Phys. Solid State. 55 (10), 2142 (2013).

Similar papers