Effect of titanium on the primary radiation damage and swelling of vanadium-titanium alloys

A.O. Boev, K.P. Zolnikov, I.V. Nelasov, A.G. Lipnitskii
Received: 26 March 2018; Revised: 27 April 2018; Accepted: 07 May 2018
This paper is written in Russian
Citation: A.O. Boev, K.P. Zolnikov, I.V. Nelasov, A.G. Lipnitskii. Effect of titanium on the primary radiation damage and swelling of vanadium-titanium alloys. Letters on Materials, 2018, 8(3) 263-267
BibTex   DOI: 10.22226/2410-3535-2018-3-263-267

Abstract

The influence of titanium on the changes in the structure of the cascade development region can contribute to the reduction of the radiation swelling of vanadium through the formation of vacancy clusters of smaller dimensions.Until now, the question of the influence of alloying elements on the stage of development of atomic displacement cascades in vanadium-based alloys, as one of the promising group of radiation-resistant materials for thermonuclear energy, has not been investigated. In this paper, a molecular dynamic study of the atomic displacement cascade development in pure vanadium and V-Ti alloys with titanium concentrations of 4, 8, and 16% is performed for energies of primary knocked-out atom of 5, 10, and 20 keV. Interactions between atoms in the V-Ti system are specified in the framework of method developed earlier for modeling systems with a metallic and covalent type of chemical bond. Interactions at small interatomic distances take into account the screened ions, which allows to correctly simulate atomic systems under high-energy conditions. The simulation was carried out at 700 K, which corresponds to the lower limit of the operating temperature range of the alloys. The purpose of the work is to establish the features of the influence of titanium on the cascade characteristics and the possibility of reducing the radiation swelling by titanium doping. The main characteristics of cascades considered in this paper are the number of generated defects at different stages of cascade and the structure of the radiation-damaged region. The distribution of the surviving defects of vacancy and interstitial type is calculated in accordance with titanium concentration and energy of primary knocked-out atom. We obtained that titanium doping leads to a decrease in the size of the vacancy clusters formed after cascades.

References (22)

1.
B. Loomis, D. Smith, F. Garner. J. Nucl. Mater. 179, 771 (1991). DOI: 10.1016/0022-3115(91)90202‑I
2.
C. Zhang, P. Zhang, R. Li, J. Zhao, C. Dong. J. Nucl. Mater. 442, 370 (2013). DOI: 10.1016/j.jnucmat.2013.08.032
3.
A. O. Boev, I. V. Nelasov, V. N. Maksimenko, A. G. Lipnitskii, V. N. Saveliev, A. I. Kartamyshev. Defect Diffus. Forum 375, 153 (2017). DOI: 10.4028/www.scientific.net/DDF.375.153
4.
S. G Psakhie, K. P. Zolnikov, D. S. Kryzhevich, A. V. Zheleznyakov, V. M. Chernov. Crystallogr. Rep. 54, 1002 (2009). DOI: 10.1134/S1063774509060157
5.
A. V. Korchuganov, K. P. Zolnikov, D. S. Kryzhevich, S. G. Psakhie. Rus. Phys. J. 60, 170 (2017). DOI: 10.1007/s11182‑017‑1056‑0
6.
A. O. Boev, D. A. Aksyonov, A. I. Kartamyshev, V. N. Maksimenko, I. V. Nelasov, A. G. Lipnitskii. J. Nucl. Mater. 492, 14 (2017). DOI: 10.1016/j.jnucmat.2017.04.046
7.
E. Alonso, M. J. Caturla, T. D. de la Rubia, J. M. Perlado. J. Nucl. Mater. 276, 221 (2000). DOI: 10.1016/S0022-3115(99)00181-6
8.
A. V. Korchuganov, K. P. Zolnikov, D. S. Kryzhevich, V. M. Chernov, S. G. Psakhie. Physics of Atomic Nuclei. 79(7), 1193 (2016). DOI: 10.1134/S1063778816070073
9.
S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, A. V. Zheleznyakov, V. M. Chernov. Physical Mesomechanics. 12(1-2), 20 (2009). DOI: 10.1016/j.physme.2009.03.003
10.
C. S. Becquart, C. Domain, J. C. van Duysen, J. M. Raulot. J. Nucl. Mater. 294, 274 (2001). DOI: 10.1016/S0022-3115(01)00421-4
11.
L. Malerba, A. Caro, J. Wallenius. J. Nucl. Mater. 382, 112 (2008). DOI: 10.1016/j.jnucmat.2008.08.014
12.
D. Terentyev, L. Malerba, M. Hou. Nucl. Instr. Meth. B. 228, 164 (2005). DOI: 10.1016/j.nimb.2004.10.039
13.
D. Terentyev, L. Malerba. J. Nucl. Mater. 329 – 333, 1161 (2004). DOI: 10.1016/j.jnucmat.2004.04.269
14.
A. G. Lipnitskii, V. N. Saveliev. Comput. Mater. Sci. 121, 67 (2016). DOI: 10.1016/j.commatsci.2016.04.008
15.
V. T. Zabolotnyy, E. E. Starostin. Fiz. Khim. Obrab. Mater. 6, 5 (2006). (in Russian) [В. Т. Заболотный, Е. Е. Старостин. Физика и химия обработки материалов. 6, 5 (2006).]
16.
A. Impagnatiello, T. Toyama, E. Jimenez-Melero. J. Nucl. Mater. 485, 122 (2017). DOI: 10.1016/j.jnucmat.2016.12.040
17.
J. Ziegler, J. Biersack, U. Littmark. Stopp. Range Ions Solids. 1, 109 (1985).
18.
A. Kartamyshev, A. Boev, et al. BSU Scient. bullet.: Math. and Phys. 121, 67 (2016).
19.
W. G. Hoover. Phys. Rev. A. 31, 1695 (1985). DOI: 10.1103/PhysRevA.31.1695
20.
H. J. C. Berendsen, J. P. M Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak. J. Chem. Phys. 81, 3684 (1984). DOI: 10.1063/1.448118
21.
A. Stukowski. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).
22.
L. A. Zepeda-Ruiz, S. Han, D. J. Srolovitz, R. Car, B. D. Wirth. Phys. Rev. B. 67(13), 134114 (2003)