Simulation of ultrasonic welding of copper: effect of the amplitude of vibrations

R.T. Murzaev, M.A. Idrisova, A.A. Nazarov show affiliations and emails
Received 28 November 2023; Accepted 05 February 2024;
Citation: R.T. Murzaev, M.A. Idrisova, A.A. Nazarov. Simulation of ultrasonic welding of copper: effect of the amplitude of vibrations. Lett. Mater., 2024, 14(1) 45-50
BibTex   https://doi.org/10.48612/letters/2024-1-45-50

Abstract

The initial structure used for atomistic simulations of USW of copper. Surface layers with constraints are shown in blue color, thermostats in yellow, and layers with free atoms in turquoise blue.We use the molecular dynamics (MD) method to study the joining of two copper sheets under a combined action of oscillating mutual shears and normal compressive pressure simulating the process of ultrasonic welding (USW) of metals. For this, we constructed an atomic system of two crystal blocks misoriented at a tilt angle of 78.46° around the common axis [112] symmetrically with respect to the contact plane. The surface roughness of the blocks was modelled by semi-cylindrical grooves. Pressure and displacements were applied via forces and displacements, respectively, assigned to atoms of constrained layers of 1.26 nm thickness at the surfaces, the temperature is controlled by thermostat layers of the same thickness located under these layers. After equilibration at 300 K under pressure 0.5 to 2 MPa, sinusoidal displacements with amplitudes of 4, 8 and 12 nm and a period of 500 ps were applied to one of the blocks. We observe an intensive dislocation activity in the grooves immediately after the beginning of shears. After the first or second cycle of displacements, pores associated with the grooves disappear and a grain boundary is formed in the contact region. We found that the amplitude of vibrations had a great effect on the structure of the grain boundary and the temperature field in the system. The grain boundary has a disordered structure with a degree of disorder increasing with the amplitude of vibrations. The temperature at the interface region also increases with the amplitude.

References (28)

1. A. M. Mitskevich. In: Physical Foundations of Ultrasonic Technology. V. 1 (ed. by L. D. Rosenberg). New York, Plenum Press (1973) pp. 101 - 238.
2. M. P. Matheny, K. F. Graff. In: Power Ultrasonics-Applications of High-intensity Ultrasound (ed. by J. A. Gallego-Juárez, K. F. Graff). Cambridge, Woodhead Publishing (2015) p. 259-293.
3. D. Bakavos, P. B. Prangnell. Mater. Sci. Eng. A. 527, 6320 (2010).
4. M. Becker, F. Balle. Process and Fracture Analysis. Metals. 11, 779 (2021).
5. G. P. Liu, X. W. Hu, Y. S. Fu, Y. L. Li. Metals. 7, 361 (2017).
6. Z. L. Ni, F. X. Ye. A review. J. Manuf. Process. 35, 580 (2018).
7. H. Peng, X. Q. Jiang, X. F. Bai, D. Y. Li, D. L. Chen. Metals. 8, 229 (2018).
8. Z. Z. Su, Z. Q. Zhu, Y. F. Zhang, H. Zhang, Q. K. Xiao. Metals. 11, 61 (2021).
9. J. W. Yang, B. A. Cao, Q. H. Lu. Materials. 10, 193 (2017).
10. Y. Long, B. He, W. Cui, Y. Ji, X. Zhuang, J. Twiefel. Mater. Design. 192, 108718 (2020).
11. S. Mostafavi, F. Bamer, B. Markert. Int. J. Adv. Manuf. Technol. 118, 2339 (2022).
12. Q. Ma, J. Ma, J. Zhou, H. Ji. J. Mater. Res. Technol. 17, 353 (2022).
13. Q. Ma, C. Song, J. Zhou, L. Zhang, H. Ji. Mater. Sci. Eng. A. 823, 141724 (2021).
14. J. Yang, J. Zhang, J. Qiao. Materials. 12, 2306 (2019).
15. A. A. Nazarov, D. V. Bachurin, Z. Ni. Metals. 12, 2033 (2022).
16. A. A. Nazarov. Lett. Mater. 6 (3), 179 (2016).
17. A. A. Nazarov. Lett. Mater. 8 (3), 372 (2018).
18. A. A. Nazarov, R. T. Murzaev. Comput. Mater. Sci. 151, 204 (2018).
19. J. Rifkin. XMD - Molecular Dynamics for Metals and Ceramics. Available online: http://xmd.sourceforge.net (accessed on 5 Aug. 2022).
20. S. M. Foiles, M. I. Baskes, M. S. Daw. Phys. Rev. B. 33, 7983 (1986).
21. K. Hayashi, N. Sakudo, T. Kawai. Surf. Coat. Technol. 83, 313 (1996).
22. A. Stukowski. Model. Simul. Mater. Sci. Eng. 18, 15012 (2010).
23. J. D. Honeycutt, H. C. Andersen. Clusters. J. Phys. Chem. 91, 4950 (1987).
24. A. J. Cao, Y. G. Wei. J. Appl. Phys. 102, 83511 (2007).
26. D. Farkas, E. Bringa. Phys. Rev. B. 75, 184111 (2007).
27. D. V. Bachurin, P. Gumbsch. Acta Mater. 258, 5491 (2010).
28. T. Shimokawa. Phys. Rev. B. 82, 174122 (2010).

Similar papers

Funding

1. Russian Science Foundation - 22-19-00617