Studying the mechanical properties of a bimetallic composite, produced by explosion welding, under incremental plastic deformation

D. Konovalov, I. Veretennikova


The paper presents the results of the studies of the changes in the mechanical characteristics of the welded zone of the bimetal "08Cr18Ni10Ti—steel 10", subjected to staged plastic deformation by rolling. The weld zone obtained as a result of explosion welding was separately considered.The paper presents the results of the studies of the changes in the mechanical characteristics of the bimetal "08Cr18Ni10Ti – steel 10", subjected to staged plastic deformation by rolling in 5 passes with a reduction of about 10% per pass. Bimetal was obtained by explosion welding. The tensile tests of bimetallic samples after each rolling pass were carried out. It was shown that the relative reduction of individual layers has changed non-proportionally to the magnitude of the relative reduction of the bimetallic strip as a whole. The weld zone obtained as a result of explosion welding was separately considered. To define the size of the welded zone, the values of microhardness distribution in the cross sections of the bimetallic strip after each passage were used. The size of the welded zone decreased from 0.4 mm to 0.1 mm after 5 passes. The values of the yield strength for the weld zone and the individual layers of the bimetal were obtained by the kinetic indentation with processing of loading curves by the original method developed in the IES UB RAS. The value of the yield strength of a bimetal after explosion welding is higher than the values for each material individually. With further plastic strain, the strength properties of the stack do not increase as intensively as the strength properties of stainless steel. A mixture rule can be used in order to calculate the theoretical conventional yield strength for a bimetal after explosion welding.

References (13)

V. I. Lysak, S. V. Kuzmin. Explosion welding. Moscow, Mashinostroenie (2005) 543 p. (in Russian) [Лысак В. И., Кузьмин С. В. Сварка взрывом. Москва, Машиностроение (2005) 543 с.]
J. Wadsworth, D. R. Lesuer. Mater. Charact. 45, 289 (2000). DOI: 10.1007/s13632‑016‑0270‑4
D. L. Olson, T. A. Siewert, S. Liu, G. R. Edwards. ASM Handbook: Volume 6: Welding, Brazing, and Soldering. Materials Park, Ohio, ASM International (1993) 1299 p.
D. Roylance. Mechanical Properties of Materials. Cambridge, MIT Press (2008) 128 p.
D. A. Konovalov, S. V. Smirnov, A. V. Konovalov. Russ. J. Nondestruct. 44(12), 847 (2008). DOI: 10.1134/S1061830908120073
D. A. Konovalov, I. A. Golubkova, S. V. Smirnov. Russ. J. Nondestruct. 47(12), 852 (2011). DOI: 10.1134/S1061830911120072
L.‑J. Zhang, Q. Pei, J.‑X. Zhang, Z.‑Y. Bi, P.‑C. Li. Mater. Des. 64, 462 (2014). DOI: 10.1016/j.matdes.2014.08.013
Y. Kaya, K. Nizamettin. Mater. Des. 52, 367 (2013). DOI: 10.1016/j.matdes.2013.05.033
I. A. Veretennikova, D. A. Konovalov, S. V. Smirnov. AIP Conf. Proc.10, 040089-1 (2016). DOI: 10.1063/1.4967146
S. V. Smirnov, I. A. Veretennikova, D. I. Vichuzhanin, Computational Continuum Mechanics. 7, 398 (2014). (in Russian) [С. В. Смирнов, И. А. Веретенникова, Д. И. Вичужанин. Вычислительная механика сплошных сред. 7, 398 (2014).] DOI: 10.7242/1999-6691/2014.7.4.38
G. D. Lahoti, S. L. Semiatin. ASM Metals Hand Book Volume 14 — Forming and forging. Materials Park, Ohio, ASM International (1993) 2100 p.
Yu. P. Trykov, V. G. Shmorgun, L. M. Gurevich. Deformation of layered composites. Volgograd, VolGTU (2001) 242 p. (in Russian) [Ю. П. Трыков, В. Г. Шморгун, Л. М. Гуревич. Деформация слоистых композитов. Монография. Волгоград, ВолГТУ (2001) 242 с.]
D. M. Karpinos, L. I. Tuchinskiy, L. R. Vishnjakov. New composite materials. Kiev, Vishha Shk. (1977) 312 p. (in Russian) [Д. М. Карпинос, Л. И. Тучинский, Л. Р. Вишняков. Новые композиционные материалы. Киев, Вища шк. (1977) 312 с.]