Microstructure and brittle fracture resistance of layered steel composites produced by explosion welding and pack rolling followed by heat treatment

S.V. Kuteneva ORCID logo , S.V. Gladkovsky, D.A. Dvoynikov, S.N. Segreev show affiliations and emails
Received: 06 August 2019; Revised: 27 September 2019; Accepted: 09 October 2019
Citation: S.V. Kuteneva, S.V. Gladkovsky, D.A. Dvoynikov, S.N. Segreev. Microstructure and brittle fracture resistance of layered steel composites produced by explosion welding and pack rolling followed by heat treatment. Lett. Mater., 2019, 9(4) 442-446
BibTex   https://doi.org/10.22226/2410-3535-2019-4-442-446

Abstract

In the present paper, the microstructure and fracture resistance characteristics of 7-layered composites based on low carbon low alloyed steel 09G2S and maraging steel EP678, obtained by two different methods: explosion welding and hot pack rolling with subsequent heat treatment were investigated.In the present paper, the microstructure and fracture resistance characteristics of 7-layered composites based on Fe-2Mn-1Si low carbon low alloyed steel and Fe-11Cr-9Ni-2Mo-1Ti maraging steel obtained by two different methods such as explosion welding and hot pack rolling with subsequent heat treatment were investigated. It was shown that an important microstructural features of Fe-2Mn-1Si steel layers are associated with the formation of a fragmentation zone ~10 μm wide with a size of structural elements 0.5-1.0 μm near the interface in the welded composites and the appearance of decarburized ferrite zone ~50 μm wide in the hot-rolled composites. Aсcording to local energy dispersive X-ray microanalysis, at the interface of welded and hot-rolled composites, the most active diffusion processes near of Fe-2Mn-1Si and Fe-11Cr-9Ni-2Mo-1Ti steel interlayer borders occur during the composites production by pack rolling. It was established that explosion welding makes it possible to retain the initial microstructure of steel blanks, with the exception of a narrow near-weld zone of grain fragmentation. After the subsequent heat treatment of explosively welded and hot-rolled composites, Fe-2Mn-1Si steel layers are characterized by a viscous ferrite(sorbitol)-pearlite microstructure, and Fe-11Cr-9Ni-2Mo-1Ti steel layers possess a martensitic microstructure with strengthening intermetallic particles. From the results of impact tests at temperatures from +20°C to −60°C, it was found that the impact strength KCV and energy of impact loading A of the hot-rolled composites are 2 and 3.5 – 5.4 times higher than the ones of the welded composites, respectively.

References (22)

1. Yu. P. Trykov, L. M. Gurevich, V. G. Shmorgunov. Sloistyye kompozity na osnove alyuminiya i yego splavov. Moscow, Metallurgiya (2004) 230 p. (in Russian) [Ю. П. Трыков, Л. М. Гуревич, В. Г. Шморгунов. Слоистые композиты на основе алюминия и его сплавов. Москва: Металлургиздат (2004) 230 с.].
2. N. Chawla, K. N. Chawla. Metal matrix сomposites, 2nd ed. New York, Springer Science + Business Media (2013) 370 p. Crossref
3. S. V. Smirnov, I. A. Veretennikova. DREAM. 4, 6 (2015). (in Russian) [С. В. Смирнов, И. А. Голубкова. DREAM. 4, 6 (2015).]. Crossref
4. D. Brigante. New Composite Materials: Selection, Design, and Application. Springer International Publishing (2014) 179 p.
5. S. V. Gladkovsky, S. V. Kuteneva, S. N. Sergeev. Mater. Charact. 154, 294 (2019). Crossref
6. I. A. Bataev, T. S. Ogneva, A. A. Bataev, V. I. Mali, M. A. Esikov, D. V. Lazurenko, Y. Guo, A. M. Jorge Junior. Mater. Des. 88, 1082 (2015). Crossref
7. L. A. Maltseva, D. S. Tyushlyaeva, T. V. Maltseva, M. V. Pastukhov, N. N. Lozhkin, D. V. Inyakin, L. A. Marshuk. Deformatsiya I Razrushenie Materialov. 4, 19 (2013). (in Russian) [Л. А. Мальцева, Д. С. Тюшляева, Т. В. Мальцева, М. В. Пастухов, Н. Н. Ложкин, Д. В. Инякин, Л. А. Маршук. Деформация и разрушение материалов. 4, 19 (2013).].
8. V. I. Mali, A. A. Bataev, I. N. Maliutina, V. D. Kurguzov, I. A. Bataev, M. A. Esikov, V. S. Lozhkin. Int. J. Adv. Manuf. Technol. 93 (9-12), 4285 (2017). Crossref
9. V. S. Lozhkin. Obrabotka metallov: tekhnologiya, oborudovanie, instrumenty. 3, 110 (2013). (in Russian) [В. С. Ложкин. Обработка металлов: технология, оборудование, инструменты. 3, 110 (2013).].
10. S. V. Gladkovsky, S. V. Kuteneva, I. S. Kamantsev, R. M. Galeev, D. А. Dvoynikov. DREAM. 6, 71 (2017). (in Russian) [С. В. Гладковский, С. В. Кутенева, И. С. Каманцев, Р. М. Галеев, Д. А. Двойников. DREAM. 6, 71 (2017).]. Crossref
11. V. I. Mali, I. A. Bataev, A. A. Bataev, D. V. Pavlyukova, E. A. Prikhodko, M. A. Esikov. Physical Mesomechanics. 14 (6), 117 (2011). (in Russian) [В. И. Мали, И. А. Батаев, А. А. Батаев, Д. В. Павлюкова, Е. А. Приходько, М. А. Есиков. Физическая мезомеханика. 14 (6), 117 (2011).].
12. J. D. Embury, N. J. Petch, A. E. Wraith. Transaction of Metal Science. AIME. 239, 114 (1967).
13. Z. Dhib, N. Guermazi, M. Gaspérini, N. Haddar. Mater. Sci. Eng. A. 656, 130 (2016). Crossref
14. A. Khadadad Motarjemi, M. Koçak, V. Ventzke. Int. J. Pres. Ves. Pip. 79 (3), 181 (2002). Crossref
15. M. D. Perkas, V. M. Kardonskii. High-Strength Maraging Steels. Moscow, Metallurgiya (1970) 224 p. (in Russian) [М. Д. Перкас, В. М. Кардонский. Высокопрочноые мартенситно-стареющие стали. Москва, Металлургия (1970) 224 с.].
16. S. V. Gladkovsky, A. I. Potapov, S. V. Lepikhin. DREAM. 4, 18 (2015). (in Russian) [С. В. Гладковский, А. И. Потапов, С. В. Лепихин. DREAM. 4, 18 (2015).]. Crossref
17. J. W. Martin. Micromechanisms in Particle-Hardened Alloys. Moscow, Metallurgiya (1983) 167 p. (in Russian) [Д. У. Мартин. Микромеханизмы дисперсионного твердения сплавов. Москва, Металлургия (1983) 167 с.].
18. S. V. Gladkovsky, S. V. Kuteneva, V. E. Veselova, E. A. Kokovikhin. Bulletin PNRPU. Mechanical engineering, materials science. 18 (3), 77 (2016). (in Russian) [С. В. Гладковский, С. В. Кутенева, В. Е. Веселова, Е. А. Коковихин. Вестник ПНИПУ. Машиностроение, материаловедение. 18 (3), 77 (2016).]. Crossref
19. A. A. Sarkeeva, A. A. Kruglov, E. M. Borodin, S. V. Gladkovsky, R. Ya. Lutfullin. Phys. Mesomech. 15 (5), 51 (2012). (in Russian) [А. А. Саркеева, А. А. Круглов, Е. М. Бородин, С. В. Гладковский, Р. Я. Литфуллин. Физическая мезомеханика. 15 (5), 51 (2012).].
20. K. Babinsky, S. Primig, W. Knabl et al. JOM. 68 (11), 2854 (2016). Crossref
21. P. G. Mikljaev, G. S. Neshpor, V. G. Kudrjashov. The kinetics of destruction. Moscow, Metallurgiya (1979) 279 p. (in Russian) [П. Г. Микляев, Г. С. Нешпор, В. Г. Кудряшов. Кинетика разрушения. Москва, Металлургия (1979) 279 с.].
22. R. L. Botvina. Fracture. Kinetika, mekhanizmy, obshchiye zakonomernosti. Moscow, Nauka (2008) 334 p. (in Russian). [Р. Л. Ботвина. Разрушение. Кинетика, механизмы, общие закономерности. Москва, Наука (2008) 334 с.].

Similar papers

Funding

1. Ministry of Education and Science of the Russian Federation - АААА-А18-118020790147-4
2. Ural Branch, Russian Academy of Sciences - № 18-9-1-20 "Arktica" program