Microstructures which prevent adhesion of materials upon explosion welding

B.A. Greenberg, M.A. Ivanov, S.V. Kuzmin, V.I. Lysak, Y.P. Besshaposhnikov, M.S. Pushkin, A.V. Inozemtsev, A.M. Patselov show affiliations and emails
Received 15 March 2018; Accepted 30 May 2018;
This paper is written in Russian
Citation: B.A. Greenberg, M.A. Ivanov, S.V. Kuzmin, V.I. Lysak, Y.P. Besshaposhnikov, M.S. Pushkin, A.V. Inozemtsev, A.M. Patselov. Microstructures which prevent adhesion of materials upon explosion welding. Lett. Mater., 2018, 8(3) 252-257
BibTex   https://doi.org/10.22226/2410-3535-2018-3-252-257

Abstract

The contact zone of the composite plates for the shell of the petrochemical reactor (coke drum) produced by explosive welding and made of steel 08Cr13 and steel 12CrMo has multilayered structure. The carbon segregation provokes the eutectoid decomposition that causes formation of colonies of rod-shaped carbides. As a result, there are two risk zones: the melted zone (2) and the segregation zone (3).Features of interface structure are examined and possible risk zones are analyzed for two, to a certain degree, alternative objects manufactured from composites produced by explosive welding. The first one is a chemical reactor vessel; the other is a petrochemical reactor vessel (coke drum). The engineering of a chemical reactor vessel is an example of the successful implementation of explosive welding. The analysis of the chemical reactor wall structure containing the copper-tantalum welded joint revealed the reasons for its stability ensuring the reactor extended service life in a harsh environment. However a risk zone might occur due to the quasi-wave nature of the interface. On the contrary, for the petrochemical reactor factors were identified which shortened its service life. The contact zone of the plates for the shell of the petrochemical reactor (coke drum) produced by explosive welding and made of steel 08Cr13 and steel 12CrMo consists of five layers. The segregation provokes the eutectoid decomposition that causes formation of colonies of rod-shaped carbides. As a result, there are two risk zones: the melted zone and the segregation zone. Rod-shaped carbide colonies act as barriers, which prevent way out of dislocation from a "labyrinth". Using the copper-titanium joints as examples, the influence of intermetallic reactions on welded joint strength was studied. Non-ordered and unfaceted clusters were observed to turn into intermetallic particles. Intermetallic particles are combined into agglomerates. Attention is drawn to the fact that the variety of operating modes and conditions presents a real hazard of intermetallic compound formation.

References (19)

1. A. A. Deribas. High Pressure Research, 1, 365 (1989). Crossref
2. J. F. Lancaster. Metallurgy of welding, 6th ed. Abington Pub, Abington Cambridge (1999) 468 p.
3. V. I. Lysak, S. V. Kuzmin. Explosion Welding. Moscow, Mashinostroenie (2005) 544 p. (in Russian) [Лысак В. И., Кузьмин С. В. Сварка взрывом. Москва, Машиностроение (2005) 544 с.].
4. V. V. Rybin, B. A. Greenberg, M. A. Ivanov, A. M. Patselov, O. V. Antonova, O. A. Elkina, A. V. Inozemtsev, G. A. Salishchev. Journal of Nanoscience and Nanotechnology, 11, 8885 (2011). Crossref
5. D. Frey, J. Banker. Recent Successes in Tantalum Clad Pressure Vessel Manufacture: A New Generation of Tantalum Clad Vessels, Corrosion Solutions Conference. Wah Chang, USA (2003) P. 163 - 169.
6. B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, O. V. Antonova, A. M. Patselov, A. V. Inozemtsev, A. V. Plotnikov, A. Y. Volkova, Y. P. Besshaposhnikov. Materials Characterization. 75, 51 (2013).
7. B. A. Greenberg, M. A. Ivanov, A. V. Inozemtsev, A. M. Patselov, M. S. Pushkin, A. M. Vlasova. Metall and Mat Trans A. 46, 3569 (2015). Crossref
8. K. S. Birdi. Handbook of surface and colloid chemistry, 3rd ed. CRC Press / Taylor and Francis, Boca Raton (2009) 709 p.
9. D. Grady. Fragmentation of Rings and Shells: The Legacy of N. F. Mott. Springer, Berlin Heidelberg (2006) 373 p.
10. A. V. Pocius. Adhesion and adhesives technology: an introduction, 2d ed. Hanser Publishers, Hanser / Gardner Publications, Munich, Cincinnati (2002) 352 p.
11. B. A. Greenberg, O. A. Elkina, A. M. Patselov, A. V. Plotnikov, M. A. Ivanov, Y. P. Besshaposhnikov. Journal of Materials Processing Technology. 215, 79 (2015). Crossref
12. F. Ernst, A. Avishai, H. Kahn, X. Gu, G. M. Michal, A. H. Heuer. Metall and Mat Trans A. 40, 1768 (2009). Crossref
13. J. Cermak, L. Kral. Journal of Alloys and Compounds. 586, 129 (2014). Crossref
14. R. Elliott. Eutectic solidification processing: crystalline and glassy alloys. Butterworths, London, Boston (1983) 378 p.
15. E. Houdremont. Handbuch der Sonderstahlkunde, 3-d ed. Springer-Verlag, Berlin Heidelberg (1956) 1051 p.
16. B. A. Greenberg, M. S. Pushkin, A. M. Patselov, A. M. Inozemtsev, M. A. Ivanov, O. V. Slautin, Yu. P. Besshaposhnikov. Welding International. 31(5), 384 (2017). Crossref
17. B. A. Greenberg, M. A. Ivanov, M. S. Pushkin, 1 A. V. Inozemtsev, A. M. Patselov, A. P. Tankeyev, S. V. Kuzmin, V. I. Lysak. Metall and Mat Trans A. 47, 5461 (2016). Crossref
18. R. W. Cahn, P. Haasen. Physical Metallurgy. Elsevier Science (1996) 2960 p.
19. A. P. Zhilyaev, T. G. Langdon. Progress in Materials Science. 53, 893 (2008). Crossref

Cited by (1)

1.
S.V. Gladkovsky, S.V. Kuteneva, S.N. Sergeev. Materials Characterization. 154, 294 (2019). Crossref

Similar papers