Simulation of the shock waves propagation through the interface of bipartite bimetallic Ni-Al particles

P.V. Zakharov, G.M. Poletaev, M.D. Starostenkov, A.I. Cherednichenko show affiliations and emails
Received 24 March 2017; Accepted 15 August 2017;
This paper is written in Russian
Citation: P.V. Zakharov, G.M. Poletaev, M.D. Starostenkov, A.I. Cherednichenko. Simulation of the shock waves propagation through the interface of bipartite bimetallic Ni-Al particles. Lett. Mater., 2017, 7(3) 296-302
BibTex   https://doi.org/10.22226/2410-3535-2017-3-296-302

Abstract

By the method of molecular dynamics the structural changes in Ni-Al bimetal particles during the passage of shock waves were studied. Investigated the possibility of forming pores near the interphase boundary metals and related effects.By means of molecular dynamics method, structural changes in Ni-Al bimetal particles during the propagation of shock waves were studied. A possibility of pore formation near the interface between the metals was established. It was found that determining factors of the pore formation near a Ni-Al interface were the mutual orientation of the metals, their size and the direction of a shock wave propagation. Two directions of the shock wave propagation were considered. In the first case, the wave was initiated on the Ni side. If the direction of the wave motion coincides with the close-packed direction in the crystal, detachment of a part of the atoms from the Al surface with a subsequent formation of clusters of these atoms was possible. In this case, the surface attained a typical shape with a dimple in the center of the particle. If the shock wave propagates along a not close-packed direction, the main part of its energy dissipated near the metal interface and led to the formation of pore nuclei. The formation of the pores depended mainly on the bimetal particle size. The dependence of the maximum pore size on the linear dimensions of the Ni-Al bipartite bimetal particles was calculated. Time evolution of the pores was studied. In the second case, the shock wave was initiated from the Al side. Similar effects were obtained. However, the pores were formed on the Al but and not on the Ni side. Such a location of the pores was due to a lower binding energy between Al-Al atoms than between Ni-Ni and Ni-Al ones. When the shock wave passed along close-packed directions, the energy was not sufficient to detach the atoms from the Ni side and form clusters of them.

References (28)

1. A. A. Bykov. Development of production of bimetals. Metallurgist: scientific and technical and industrial journal. 9, 61 - 65 (2009). (in Russian) [А. А. Быков. Развитие производства биметаллов. Металлург: научно-технический и производственный журнал. 9, 61 - 65 (2009).].
2. I. N. Pavlov, V. N. Lebedev, A. G. Kobelev et al. Layered compositions. Moscow, Metallurgiya. (1986) 216 p. (in Russian) [И. Н. Павлов, В. Н. Лебедев, А. Г. Кобелев и др. Слоистые композиции. Москва, Металлургия. 1986. 216 с.].
3. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, V. M. Novotortsev. Bimetallic nanoalloys in heterogeneous catalysis industrially important reactions: synergism and structural organization of active components. Advances in Chemistry. 83 (8), 718 - 732 (2014). (in Russian) [О. Г. Эллерт, М. В. Цодиков, С. А. Николаев, В. М. Новоторцев. Биметаллические наносплавы в гетерогенном катализе промышленно важных реакциях: синергизм и структурная организация активных компонентов. Успехи Химии. 83 (8), 718 - 732 (2014).].
4. U. Sanyal, D. Therese, R. Jagirdar Balaji. Dalton Trans. V. 42, Issue 19, 7147 - 7157 (2013).
5. S. E. Eliana Misi, A. Ramli, F. H. Rahman. Journal of Applied Sciences. 11, 1297 - 1302 (2011).
6. Yinlong Shen, Weiguang Gong, Baicun Zheng, Lei Gao Ni. Applied Catalysis B: Environmental. V. 181, 769 - 778 (2016).
7. Fabien Massicot, Raphaël Schneider, Yves Fort, Sandra Illy-Cherrey, Olivier Tillement. Tetrahedron. V. 56, Issue 27, 4765 - 4768 (2000).
8. D. V. Shirokorad, G. V. Kornich, S. G. Bug. Simulation of the interaction of bipartite bimetallic clusters with low-energy argon clusters. Solid State Physics. V. 59, Issue 1, 189 - 199 (2017). (in Russian) [Д. В. Широкорад, Г. В. Корнич, С. Г. Буга. Моделирование взаимодействия двудольных биметаллических кластеров с низкоэнергетическими кластерами аргона. Физика твердого тела. Т. 59, вып. 1, 189 - 199 (2017).].
9. A. J. Gavens, D. Van Heerden, A. B. Mann, M. E. Reiss, T. P. Weihs. J. Appl. Phys. 87, 1255 (2000).
10. M. D. Wiemer, J. Braeuer, D. Wunsch, T. Gessner. ECS Trans. 33, 307 (2010).
11. A. V. Markidonov, M. D. Starostenkov, M. N. Smirnova Russian Physics Journal V. 58, Issue 6, pp 828 - 832 (2015).
12. A. V. Markidonov, M. D. Starostenkov Bulletin of Voronezh State University. Series: physics, mathematics 1. 14 - 23 (2016) (in Russian) [А. В. Маркидонов, М. Д. Старостенков Коалесценция вакансионных нанопор в кристалле с гцк решеткой под воздействием ударных послекаскадных волн. Вестник воронежского государственного университета. серия: физика, математика. 1. 14 - 23 (2016)].
13. A. V. Markidonov, M. D. Starostenkov On the possibility of homogeneous nucleation of a pore in a grain boundary region under the influence of shock after-cascade waves. Issues of atomic science and technology. Series: Mathematical modeling of physical processes. V.3 pp. 37 - 46 (2016) (in Russian) [А. В. Маркидонов, М. Д. Старостенков О возможности гомогенного зарождения поры в зернограничной области под воздействием ударных послекаскадных волн. Вопросы атомной науки и техники. Серия: Математическое моделирование физических процессов. Т. 3. С. 37 - 46 (2016)].
14. V. V. Ovchinnikov Phys. Usp. 51. 955 - 964 (2008).
15. W. M. Howard, J. D. Molitoris AIP Conference Proceedings 845, 319 (2006);. Crossref
16. C. Montross, T. Wei, L. Ye, G. Clark, Y. Mai: Vol. 10. Issue 10, P. 1021 - 1036 (2002).
17. A. Molinari, G. Ravichandran. Fundamental structure of steady plastic shock waves in metals. Journal of Applied Physics, 95 (4). pp. 1718 - 1732. (2004).
18. A. V. Markidonov, M. D. Starostenkov, P. V. Zakharov, O. V. Obidina. Pore formation in a fcc crystal under the influence of shock after-cascade waves. Fundamental problems of modern materials science. 12 (2), 231 - 240 (2015). (in Russian) [А. В. Маркидонов, М. Д. Старостенков, П. В. Захаров, О. В. Обидина. Порообразование в ГЦК кристалле под воздействием ударных послекаскадных волн. Фундаментальные проблемы современного материаловедения. 12 (2), 231 - 240 (2015).].
19. A. V. Sannikov, G. M. Poletaev, A. A. Soskov, M. D. Starostenkov. Interaction of point defects with coherent interphase boundaries of Ni-Al (100) and (111). Fundamental problems of modern materials science. 11 (3), 317 - 321 (2014). (in Russian) [А. В. Санников, Г. М. Полетаев, А. А. Сосков, М. Д. Старостенков. Взаимодействие точечных дефектов с когерентными межфазными границами Ni-Al (100) и (111). Фундаментальные проблемы современного материаловедения. 11 (3), 317 - 321 (2014).].
20. A. V. Sannikov, G. M. Poletaev, V. R. Mikryukov, M. D. Starostenkov, A. A. Soskov. Atomic structure and diffusion permeability of the interphase boundaries of Ni-Al, Cu-Au, Ni-γFe. Proceedings of universities. Ferrous metallurgy. V. 57, no. 8, 56 - 59 (2014). (in Russian) [А. В. Санников, Г. М. Полетаев, В. Р. Микрюков, М. Д. Старостенков, А. А. Сосков. Атомная структура и диффузионная проницаемость межфазных границ Ni-Al, Cu-Au, Ni-γFe. Известия вузов. Черная металлургия. Т. 57, № 8, 56 - 59 (2014).].
21. G. M. Poletaev, A. V. Sannikov, A. A. Berdychenko, M. D. Starostenkov. Materials Physics and Mechanics. V.22, no. 1, 15 - 19 (2015).
22. LAMMPS Molecular Dynamics Simulator http://lammps.sandia.gov /.
23. J. E. Angelo, N. R. Moody, and M. I. Baskes, Trapping of hydrogen to lattice-defects in nickel // Modelling Simul. Mater. Sci. Engr. 3, 289 - 307 (1995).
24. Open visualization tool (OVITO) http://www.ovito.org /.
25. V. G. Chudinov, R. M. J. Cotterill, V. V. Andreev. Physica Status Solidi (a). V.122, no.1, 111 - 120 (1990).
26. A. M. Iskandarov, N. N. Medvedev, P. V. Zakharov, S. V. Dmitriev. Computational Materials Science. V. 47, 429 - 431 (2009).
27. P. V. Zakharov, A. V. Markidonov, M. D. Starostenkov, G. M. Poletaev, A. M. Eremin, O. V. Obidina. Effect of shock after-cascade waves on the interphase boundary of bimetals Ni-Al, Ni-Fe. Fundamental problems of modern materials science. V. 13, no. 1, 77 - 83 (2016). (in Russian) [П. В. Захаров, А. В. Маркидонов, М. Д. Старостенков, Г. М. Полетаев, А. М. Ерёмин, О. В. Обидина. Влияние ударных послекаскадных волн на межфазную границу биметаллов Ni-Al, Ni-Fe. Фундаментальные проблемы современного материаловедения. Т. 13, № 1, 77 - 83 (2016).].
28. N. I. Koshkin, M. G. Shirkevich. The handbook on elementary physics is the fifth edition, revised. Moscow, Science. (1972) 256 p. (in Russian) [Н. И. Кошкин, М. Г. Ширкевич. Справочник по элементарной физике издание пятое, переработанное.Москва, Наука. 256 с. (1972)].

Similar papers