Structure and strength of Al-Mn-Cu-Zr-Cr-Fe ALTEC alloy after radial-shear rolling

A.N. Petrova, D.Y. Rasposienko, V.V. Astafyev, A.O. Yakovleva show affiliations and emails
Received 17 November 2022; Accepted 26 May 2023;
Citation: A.N. Petrova, D.Y. Rasposienko, V.V. Astafyev, A.O. Yakovleva. Structure and strength of Al-Mn-Cu-Zr-Cr-Fe ALTEC alloy after radial-shear rolling. Lett. Mater., 2023, 13(2) 177-182
BibTex   https://doi.org/10.22226/2410-3535-2023-2-177-182

Abstract

As cast Al-1.8Mn-1.6Cu-0.15Cr-0.15Fe (wt. %) alloy structure consist of aluminum solid solution, eutectic Al6(FeMn) and Al2Cu, as well as Al7Cr and Al20Cu2Mn3 dispersive particles. Radial shear rolling results in partial dissolution of Al20Cu2Mn3 dispersoids, grain refinement to the size of 1.6 μm, increasing yield stress up to 83 MPa and ultimate strength up to 216 MPa. The plasticity of the deformed alloy is 25%.The phase composition and structure of as-cast and deformed Al-1.53Cu-1.66Mn-0.38Zr-0.15Cr-0.15Fe (wt.%) were investigated. The radial shear rolling was used for the deformation of the alloy. The structure of as-cast alloy consists of aluminum solid solution, eutectic Al6(FeMn) and Al2Cu, as well as Al7Cr and Al20Cu2Mn3 dispersive particles. It is assumed that radial shear rolling results in the refinement and partial dissolution of Al20Cu2Mn3 dispersoids. Along with this, significant grain refinement was established after deformation. The average grain-subgrain size in the alloy after deformation is 1.6 μm. After deformation the alloy has the yield stress of 83 MPa and ultimate strength of 216 MPa. The elongation to failure of the deformed alloy is 25 %. Owing to the partial deformation induced dissolution of the aluminides and supersaturated solid solution formation, there is a potential for strengthening upon heat treatment of the alloy and improvement of its thermal resistance.

References (20)

1. Y. Estrin, A. Vinogradov. Acta Materialia. 61, 782 (2013). Crossref
2. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Prog. Mat. Sci. 45 (2), 103 (2000). Crossref
3. T. G. Langdon. International Journal of Material Research. 98 (4), 251 (2007). Crossref
4. R. Z. Valiev, N. A. Enikeev, M. Y. Murashkin, V. U. Kazykhanov, X. Sauvage. Scr. Mater. 63, 949 (2010). Crossref
5. X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita, R. Z. Valiev. Mater. Sci. Eng. A. 540, 1 (2012). Crossref
6. Y. Nasedkina, X. Sauvage, E. V. Bobruk, M. Y. Murashkin, R. Z. Valiev, N. A. Enikeev. Alloys Compd. 710, 736 (2017). Crossref
7. B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, R. Z. Valiev. Scr. Mater. 70, 59 (2014). Crossref
8. T. Masuda, X. Sauvage, S. Hirosawa, Z. Horita. Mater. Sci. Eng A. 793, 139668 (2020). Crossref
9. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin. Acta Mater. 72, 125 (2014). Crossref
10. N. A. Belov, A. N. Alabin, I. A. Matveeva. J. Alloys Compd. 583, 206 (2014). Crossref
11. N. A. Belov, A. N. Alabin. Mater. Sci. Forum. 765, 13 (2013). Crossref
12. N. A. Belov, N. O. Korotkova, T. K. Akopyan, K. A. Tsydenov. Metals. 9, 1246 (2019). Crossref
13. I. J. Polmear. Light Metals: From Traditional Alloys to Nanocrystals, fourth ed. Oxford, Elsevier (2006) 421 p.
14. J. O. Andersson, T. Helander, L. Höglund, P. F. Shi, B. Sundman. Thermo-Calc and DICTRA, Computational tools for materials science. Vol. 26. Calphad (2002) pp. 273 - 312.
15. G. H. Gulliver. J. Inst. Met. 9, 120 (1913).
16. E. Scheil. Z. Metallkd. 34, 70 (1942).
17. L. F. Mondolfo, Aluminum Alloys: Structure and Properties. London, Butterworths (1976) 806 p. Crossref
18. N. A. Belov, T. K. Akopyan, P. K. Shurkin, N. O. Korotkova. Journal of Alloys and Compounds. 864, 158823 (2021). Crossref
19. S. Mondol, S. Kumar, K. Chattopadhyay. Mater. Sci. Eng. A. 759, 583 (2019). Crossref
20. S. Mondol, S. Kashyap, S. Kumar, K. Chattopadhyay. Mater. Sci. Eng. A. 732, 157 (2018). Crossref

Similar papers

Funding

1. Russian science foundation - 22-23-00904