Structure and mechanical properties of Al-Cu-Mg alloy after severe plastic deformation

E. Khafizova, I. Iskandarova, R. Islamgaliev, D. Pankratov show affiliations and emails
Received: 18 May 2015; Revised: 11 August 2015; Accepted: 27 August 2015
This paper is written in Russian
Citation: E. Khafizova, I. Iskandarova, R. Islamgaliev, D. Pankratov.  Structure and mechanical properties of Al-Cu-Mg alloy after severe plastic deformation. Lett. Mater., 2015, 5(4) 399-403


At the present time, ultrafine-grained (UFG) metallic materials produced by severe plastic deformation (SPD) generate great interest. In our work we studied the structural features of ultrafine-grained samples of an Al-Cu-Mg alloy after multiple semi-closed forging (MSF) and equal-channel angular pressing (ECAP) at various temperatures. The mean grain size, as well as the shape and sizes of dispersed precipitates were determined by transmission electron microscopy (TEM). The ultimate tensile strength and elongation to failure of the UFG samples were evaluated by tensile testing. A scanning electron microscopy (SEM) was used to study the fracture surface of the samples after tensile tests. In the ECAP-processed samples, the deformation temperature was lower or equal to the temperature of aging, which resulted in a small grain size of the dispersed particles (30–70 nm) that contribited to the accumulation of a higer dislocation density and, grain refinement down to 200–830 nm. In the case of MSF processing, the temperature and time of deformation were significantly higher, which led to coarsening of particles (up to 150 nm and larger) and a larger grain size (630–980 nm). The role of a grain size and a size of dispersed particles in attaining higher strength in the ECAP-processed samples as compared with the MSF-processed samples is discussed

References (13)

1. Valiev R. Z., Islamgaliev R. K., Alexandrov I. V. Progressin Materials Science. 45, 103-189 (2000).
2. Valiev R. Z., Langdon T. G. Progress in Materials Science. 51, 881-981 (2006). Crossref
3. Zhilyaev A. P., Langdon T. G. Progress in MaterialsScience 53, 893-979 (2008).
4. Nanomaterials by severe plastic deformation. Proceedingsof international conference NanoSPD5. Edited by J.T.Wang, R.B. Figueiredo, T.G. Langdon. Materials ScienceForum. 667-669 (2011) 1-1224.
5. Nanomaterials by severe plastic deformation. Proceedingsof international conference NanoSPD6.IOP ConferenceSeries: Materials Science and Engineering. 63 (2014) 012001-012173.
6. Zolotorevskii V.S. Mechanical properties of metals. - M .:Metallurgy, 1983. - p.352 (in Russian) [ЗолоторевскийВ.С. Механические свойства металлов. - М.:Металлургия, 1983. - 352 с.].
7. Nurislamova G., Sauvage X., Murashkin M., IslamgalievR., Valiev R.. Phil. Mag. Lett. 88, 6 , 459-466 (2008).
8. Sabirov I.N, Yunusov N.F, Islamgaliev R.K, Valiev R.Z.The Physics of Metals and Metallography. 93(1) p 94-99(2002) (in Russian) [Сабиров И.Н., Юнусова Н.Ф., Исламгалиев Р.К., Валиев Р.З.. Физика металлов и ме-талловедение. 93, 1 c 94-99 (2002)].
9. Kim W.J., Chung C.S., Ma, S.I.Hong D.S., Kim H.K...Scripta mater. 49 (2003) 333-338.
10. Segal V.M, Reznikov, V.I, Kopylov V.I. Processes ofstructure metal plastic. Minsk: Science and Technology, 1994. -p.232 (in Russian) [Сегал В.М., Резников В.И., Копылев В.И. Процессы пластического структурооб-разования металлов. Минск: Наука и техника, 1994.-232 с.].
11. Patent RF No 2393936. 10.07.2010 (in Russian) [Патент РФ No 2393936. 10.07.2010].
12. Kulyasova O.B, Islamgaliev R.K, Valiev R.Z, FMMT100 No3. P 83-90 (2005) (in Russian) [Кулясова О.Б., Исламгалиев Р.К., Валиев Р.З. ФММ Т100 No3. С 83-90(2005)].
13. Khafizova E. and Islamgaliev R. IOP Conf. Series:Materials Science and Engineering 63 (2014) 012081. Crossref

Cited by (2)

V. A. Krasnoveikin, A. A. Kozulin, V. A. Skripnyak, E. N. Moskvichev, D. V. Lychagin. Inorg. Mater. Appl. Res. 9(2), 192 (2018). Crossref
S. O. Rogachev, V. A. Andreev, V. S. Yusupov, S. A. Bondareva, V. M. Khatkevich, E. V. Nikolaev. Met. Mater. Int. 28(4), 1038 (2022). Crossref

Similar papers