Structure, Phase Composition and Mechanical Properties of Bioinert Zirconium-Based Alloy after Severe Plastic Deformation

A.Y. Eroshenko1, A.M. Mairambekova2, Y.P. Sharkeev1,3, Z.G. Kovalevskaya1,3, M.A. Khimich1,2, P.V. Uvarkin1
1Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences, 2/4, pr. Akademicheskii, Tomsk, 634055, Russia.
2Tomsk State University, 36, Lenin ave., Tomsk, 634050, Russia.
3Tomsk Polytechnic University, 30, Lenin ave., Tomsk, 634050, Russia.


Combined SPD method including multiple abc-pressing and multi-pass rolling resulted in the formation of  two-phase ultrafine-grained binary Zr-1Nb alloy structure, where the average alloy structural elements size was 0.22 µm. Ultrafine-grained alloy included high level of mechanical properties (yield strength – 450 MPa, ultimate tensile strength – 780 MPa, microhardness – 2800 MPa) at low elastic modulus (51 GPa).Bioinert binary Zr-1Nb alloy as a perspective material in multi-applicable implant production is investigated. Annealed alloy billets are exposed to severe plastic deformation including multi-cycle abc-pressing and multipass rolling in grooved rollers. The first abc-pressing stage involves three cycles within the temperature interval of 500-400°C from one pressing cycle to another. In the second stage the billets are deformed through rolling in grooved rollers at room temperature. Rolling in grooved rollers provides the formation of a homogeneous structure throughout the bulk billet volume and additional grain refinement. The fine-grained structured alloy embraces 2.8 µm α-Zr equiaxial matrix grains and 0.4 µm β-Nb particles distributed on the boundaries and within α-Zr matrix grain body. As a result of severe plastic deformation binary ultrafine-grained structured alloy with 0.22 µm structural elements is formed. Transmission electron microscopy shows that the microstructure consists of α-Zr grains, while β-Nb phase grains are not identified structurally or via X-ray diffraction. Only the diffraction identification analysis reveals β-Nb presence in the alloy. Ultrafine-grained alloy structure enhances high mechanical properties (yield strength – 450 MPa, ultimate tensile strength –780 MPa, microhardness – 2800 MPa) with low elastic modulus. Zr-1Nb alloy in fine-grained state has elastic modulus of 59 GPa and in ultrafine-grained state – 51 GPa, which are comparable with the elastic modulus of bone tissue (5-50 GPa).

Received: 13 November 2017   Revised: 27 November 2017   Accepted: 27 November 2017

Views: 77   Downloads: 25


Titanium, niobium, zirconium and tantalum for medical and surgical applications. Book edited by L. D. Zardiackas, M. J. Kraay, H. L. Freese. ASTM International. (2006) 265 р.
M. Abdel-Hady Gepreel, M. Niinomi. J. Mechan. Behav. Biomed. Mater. 20, 407 (2013). DOI: 10.1016/j.jmbbm.2012.11.014.
R. Banerjee, S. Nag, H. L. Fraser. Mater. Sci. Eng. C 25, 282 (2005). DOI: 10.1016/j.msec.2004.12.010.
M. T. Mohammed, Z. A. Khan, A. N Siddiquee. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 8, 788 (2014).
Zh. G. Kovalevskaya, M. A. Khimich, A. V. Belyakov, I. A. Shulepov. Adv. Mater. Res. Sci. J. 1040, 39 (2014). DOI: 10.4028/
Yu. P. Sharkeev, A. Yu. Eroshenko, Zh. G. Kovalevskaya, A. A Saprykin, E. A. Ibragimov, I. A. Glukhov, M. A. Khimich, P. V. Uvarkin, E. V. Babakova. Russian Phys. J. 59, 430 (2016).
M. B. Sedelnikova, Yu. P. Sharkeev, E. G. Komarova, I. A. Khlusov, V. V. Chebodaeva. Surf. Coat. Technol. 307PC, 1274 (2016). DOI: 10.1016/j.surfcoat.2016.08.062.
M. S. Ivanova, M. A. Pirozhkova. Russian Dental J. 3, 40 – 44 (2008). (in Russian) [М. С. Иванова, М. А. Пирожкова. Российский стоматологический журнал. 3, 40 – 44 (2008)]
C. Nobert, H. Dena, M. Andrea. Periodontol 2000. 73, 241 (2017). DOI: 10.1111/prd.12180.
M. B. Sedelnikova, E. G. Komarova, Yu. P. Sharkeev, T. V. Tolkacheva, I. A. Khlusov, L. S. Litvinova, K. A. Yurova, V. V. Shupletsova. Bioactive Mater. 2, 177 (2017). DOI: 10.1016/j.bioactmat.2017.01.002.
Corrosion and Corrosion Protection. Handbook edited by P. A. Schweitzer. New York, Marcel Dekker. Inc. (1989) 660 p.
M. A. Filyand, E. I. Semenova. Properties of rare elements. Handbook. Moscow, Metallurgy. (1964) 913 p. (in Russian) [М. А. Филянд, Е. И. Семенова. Свойства редких элементов. Справочное пособие. Москва, Металлургия. (1964) 913 С.]
G. L. Millar. Zirconium. Book. London, Butterworth Scientific Publications. (1954) 239 p.
R. Kondo, N. Nomura, Suyalatu, Y. Tsutsumi, H. Doi, T. Hanawa. Acta Biomaterialia. 7, 4278 (2011). DOI: 10.1016/j.actbio.2011.07.020.
R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: fundamentals and applications. Book. New Jersey, John Wiley, Hoboken, New Jersey, USA, and TMS. (2014) 456 p.
G. P. Grabovetskaya, I. P. Mishin, E. N. Stepanova, I. P. Chernov, D. Yu. Bulynko. Steel in Translation. 45 (2), 111 (2015).
L. Y. Egorova, Y. V. Khlebnikova, V. P. Pilyugin. Letters on Materials. 6 (3), 237 – 242 (2016). (in Russian) [Л. Ю. Егорова, Ю. В. Хлебникова, В. П. Пилюгин. Письма о материалах. 6 (3), 237 – 242 (2016)] DOI: 10.22226/2410‑3535‑2016‑3‑237‑242
Yu. P. Sharkeev, Zh. G. Kovalevskaya, M. A. Khimich, V. A. Bataev, Q. Zhu, A. V. Belyakov, I. A. Gluhov. Key Eng. Mater.: Sci. J. 683, 174 (2016). Doi:10.4028/
Y. P. Sharkeev, A. Y. Eroshenko, K. S. Kulyashova, K. A. Suvorov, S. V. Fortuna, M. Epple, O. Prymak, V. Sokolova, S. Chernousova. Materialwissenschaft und Werkstofftechnik. 44 (2-3), 198 (2013). DOI: 10.1002/mawe.201300113.
ASTM E1382 – 97 (2010) Standard Test Methods for Determining Average Grain Size Using Semiautomatic and Automatic Image Analysis.
Н.‑Keun Park, Y. K. Hong, S. Q Lee, S. Kee. Materials of the SPIE International Conference on Opto-mechatronic Actuators, Sensors and Control. SPIE, Philadelphia. 5602 (2004) p. 115 – 121.
E. V. Kozlov, N. A. Koneva, L. I. Trishkina, A. N. Zhdanov. Russ. Metall. 4, 264 (2010).
A. S. Zaymovskii, A. V. Nikulina, A. G. Reshetnikov. Zirconium alloys in nuclear engineering. Book. Moscow, Energoatomizdat. (1994) 253 p. (in Russian) [А. С. Займовский, А. В. Никулина, Н. Г. Решетников. Циркониевые сплавы в ядерной энергетике. Книга. Москва, Энергоатомиздат. (1994) 253 С.]
A.‑H. Gepreel, M. Niinomi. J. Mech. Behav. Biomed. Mat. 20, 407 (2013).
V. L. Praskevich. Dental Implantology: Foundations of theory and practice. Handbook. Minsk, “Unipress”. (2002) 268 p. (in Russian) [В. Л. Праскевич. Дентальная имплантология: Основы теории и практики. Справочное пособие. Минск, «Юнипресс». (2002) 268 с.]