Features of structural phase transformations in zirconium Cu-0.18%Zr alloy after high-pressure torsion and heating

S.V. Dobatkin1,2, M. Janecek3, N.R. Bochvar1, D.V. Shangina1,2
1Federal State Budget Institution of Science A.A. Baikov Institute of Metallurgy and Materials Science of RAS, Leninskiy prospect 49, 119991, Moscow
2National Science and Technology University "MISA", Laboratory of hybrid nanostructured materials, Leninskiy prospect 4, 119049, Moscow
3Karlov University, Ovocný trh 5, 116 36, Prague, Czech Republic


It is shown that high pressure torsion (HPT) of Cu-0.18%Zr alloy leads to formation of submicrocrystalline structure with the grain size of 200-250 nanometers. Studying of electrical resistivity of the Cu-0.18% Zr alloy showed that during HPT it increases with increasing the strain in comparison with initial not deformed state. It can be connected with changes of grain and subgrain structure, and also with processes of dissolution of particles of the second phase Cu5Zr during deformation. Decreasing of electrical resistivity values of Cu-0.18% Zr alloy after HPT during heating in the temperatures range of 250-400°C and preservation or increase of microhardness values in this temperature interval reveal of aging processes with allocation of Cu5Zr particles and confirm the fact of partial supersaturation of solid solution of copper with zirconium during deformation.

Received: 02 October 2013   Revised: 14 November 2013   Accepted: 18 November 2013

Views: 125   Downloads: 23


T.C. Lowe, R.Z. Valiev. Investigations and applications of severe plastic deformation. The Netherlands. Dordrecht. Kluwer Academic Publishing. (2000) p. 395.
M.J. Zehetbauer, R.Z. Valiev. In: Nanomaterials by severe plastic deformation. Austria. Wiley-VCH. (2003) p. 850.
Z. Horita. Nanomaterials by severe plastic deformation. Switzerland. Trans Tech Publications Ltd. (2005) p. 1030.
Y. Estrin, H.J. Maier. Nanomaterials by severe plastic deformation. Switzerland. Trans. Tech. Publications Ltd. (2008) p. 1094.
K. Neishi, Z. Horita, T.G. Langdon. Scripta Mater. 45, 965 (2001).
A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov. Acta Materialia. 50, 1639 (2002).
A. Vinogradov, T. Ishida, K. Kitagawa, V.I. Kopylov. Acta Materialia. 53, 2181 (2005).
Y. Amouyal, S.V. Divinski, Y. Estrin, E. Rabkin. Acta Materialia. 55, 5968 (2007).
R. Kužel, V. Cherkaska, Z. Matěj, M. Janeček, J. Čížek,M. Dopita. Z Kristallogr. Suppl. 27, 73 (2008).
M. Dopita, M. Janeček, D. Rafaja, J. Uhlíř, Z. Matěj, R. Kužel. Int. J. Mater. Res. 100(6), 785 (2009).
M. Janeček, J. Čížek, M. Dopita, R. Král, O. Srba. Mater. Sci. Forum. 584–586, 440 (2008).
R. Kužel, M. Janeček, Z. Matěj, J. Čížek, M. Dopita, O. Srba. Metall. Mater. Trans. 41A, 1174 (2009).
K. Valdes Leуn, M.A. Munoz-Morris, D.G. Morris. Mat. Sci. Eng. A. 536, 181 (2012).
J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon. Mat. Sci. Eng. A. 556, 526 (2012).
M. Dopita, M. Janecek, R. Kuzel, H.J. Seifert, S. Dobatkin. J. Mat. Sci. 45, 4631 (2010).
J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, T.G. Langdon. Materials Science and Engineering A. 528, 7715 (2011).
J. Wongsa-Ngam, M. Kawasaki, T.G. Langdon. J. Mater. Sci. 47, 7782 (2012).
P.W. Bridgman. J. Appl. Phys. 14, 273 (1943).
A.P. Zhilyaev, T.G. Langdon. Prog. Mater. Sci. 53, 893 (2008).