Aging of WE43 magnesium alloy after mechanical crushing and subsequent high pressure torsion

P.B. Straumal ORCID logo , N.S. Martynenko, A.A. Mazilkin, A.R. Kilmametov, B. Baretzky show affiliations and emails
Received 17 April 2019; Accepted 05 August 2019;
Citation: P.B. Straumal, N.S. Martynenko, A.A. Mazilkin, A.R. Kilmametov, B. Baretzky. Aging of WE43 magnesium alloy after mechanical crushing and subsequent high pressure torsion. Lett. Mater., 2019, 9(3) 370-374
BibTex   https://doi.org/10.22226/2410-3535-2019-3-370-374

Abstract

Mechanical crushing prior to high pressure torsion of WE43 alloy improved the microhardness to an extraordinarily high value of 1557 ± 25 MPa.Present work aims at investigation of the consequences of mechanical crushing prior to high pressure torsion (HPT) of the Mg-Y-Nd-Zr (WE43) alloy. Specifically the presence and size of the effect on the aging properties compared to the initially solid state and subsequent HPT are studied. For this, the WE43 alloy was mechanically crushed into particles of 0.5 –1 mm size. Than the obtained powder was formed to pellets and deformed at a pressure of 6 GPa for 10 revolutions with 1 rpm rotation speed. Thermal stability of the HPT processed alloy microstructure was studied by monitoring its microhardness and aging. Mechanical crushing and subsequent HPT processing at room temperature results in significant strengthening of magnesium alloy WE43. It was found that strengthening induced by HPT sustained to 200°C. The strength of the HPT processed alloy was additionally improved by subsequent aging. Extraordinarily high maximum value of microhardness of 1557 ± 25 MPa was reached. We suppose that crushing prior to high pressure torsion creates additional defects induced by the surfaces of individual powder particles during HPT. Additionally the surfaces of individual powder particles can act as segregation centers for rare earth elements. That decreases electrical resistivity due to lower precipitate dissolution and lower solid solution supersaturation.

References (18)

1. Y. Liu, S. Zheng, N. Li, H. Guo, Y. Zheng, J. Peng. Mater. Lett. 179, 100 (2016). Crossref
2. N. Li, C. Guo, Y. H. Wu, Y. F. Zheng, L. Q. Ruan. Corros. Eng. Sci. Technol. 47, 346 (2012). Crossref
3. E. A. Lukyanova, N. S. Martynenko, I. Shakhova, A. N. Belyakov, L. L. Rokhlin, S. V. Dobatkin, et al. Mater. Lett. 170, 5 (2016). Crossref
4. A. Salandari-Rabori, A. Zarei-Hanzaki, S. M. Fatemi, M. Ghambari, M. Moghaddam. J. Alloys Compd. 693, 406 (2017). Crossref
5. M. Diez, H. E. Kim, V. Serebryany, S. Dobatkin, Y. Estrin. Mater. Sci. Eng. A. 612, 287 (2014). Crossref
6. F. Zhang, K. X. Zhang, C. W. Tan, X. D. Yu, H. L. Ma, F. C. Wang, et al. Trans. Nonferrous Met. Soc. China (English Ed.). 21, 2140 (2011). Crossref
7. P. B. Straumal, N. Martynenko, D. Amelina, A. Nekrasov, S. Dobatkin. Defect Diffus. Forum. 385, 218 (2018). Crossref
8. B. Straumal, A. Mazilkin, P. Straumal, A. Myatiev. Int. J. Nanomanuf. 2, 253 (2008). Crossref
9. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, B. Baretzky. Acta Mater. 56, 6246 (2008). Crossref
10. B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal. J. Eur. Ceram. Soc. 29, 1963 (2009). Crossref
11. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schütz, et al. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 1 (2009). Crossref
12. P. B. Straumal, S. V. Stakhanova, G. Wilde, S. V. Divinski. Scr. Mater. 149, 31 (2018). Crossref
13. B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, et al. JETP Lett. 92, 396 (2010). Crossref
14. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, A. A. Myatiev, P. B. Straumal, G. Schütz, et al. J. Appl. Phys. 108, 1 (2010). Crossref
15. T. Mohri, M. Mabuchi, N. Saito, N. Nakamura. Mater Sci Eng A. 257, 287 (1988). Crossref
16. S. K. Panigrahi, W. Yuan, R. S. Mishra, R. DeLorme, B. Davis, R. A. Howell et al. Mater Sci Eng A. 530, 28 (2011). Crossref
17. X. Wang, C. Liu, L. Xu, H. Xiao, L. Zheng. J Mater Res. 28 (10), 1386 (2013). Crossref
18. S. Rusz, M. Salajka, L. Čízek, S. Tylšar, J. Kedroň. Mater Sci Forum. 782, 404 (2014). Crossref

Similar papers

Funding

1. Russian Science Foundation - grant 17‑72‑10304