Structure and properties of aluminum alloy system Al-Mg-Si after processing by the method of Multi-ECAP-Conform

E.I. Fakhretdinova, E.V. Bobruk, G.Yu. Sagitova, G.I. Raab show affiliations and emails
Accepted  28 May 2015
This paper is written in Russian
Citation: E.I. Fakhretdinova, E.V. Bobruk, G.Yu. Sagitova, G.I. Raab. Structure and properties of aluminum alloy system Al-Mg-Si after processing by the method of Multi-ECAP-Conform. Lett. Mater., 2015, 5(2) 202-206
BibTex   https://doi.org/10.22226/2410-3535-2015-2-202-206

Abstract

The microstructure of a billet from the Al-Mg-Si system after processing by the method of Multi-ECAP-Conform was investigated and its mechanical and electrical properties were defined. The main feature of this method is the combination of two techniques of equal channel angular pressing (ECAP): pressing with parallel channels (ECAP-PC) and continuous pressing according to the Conform scheme (ECAP-Conform). The level of true strain e>2.5 is achieved for one cycle of processing of the billet by the method of Multi-ECAP-Conform. It was revealed that one processing cycle of an aluminum alloy billet of the Al-Mg-Si system by the Multi-pressing-Conform technique allows to form a mixed structure with the subgrains, dominantly elongated along the direction of shear deformation. Formation of separate zones, having equiaxed grains with an average size of 460 nm is observed in the structure. It was shown that the refinement of the aluminum matrix is accompanied with the formation of nanosized particles of secondary hardening phase of Mg2Si. Evaluation of properties of the aluminum alloy after processing of a billet by the method of Multi-ECAP-Conform was made. It was revealed that as a results of formation of the UFG structure (cold work and disperse hardening) the conventional yield stress (YS) and tensile strength (UTS) increased from 120 and 180 MPa to 221 and 243 MPa and the electrical conductivity (IACS) increased from 51.3 to 54.3 % in comparison with the as-received condition (T1).

References (13)

1. D. I. Beliy. Aluminum alloys for electric conductors used in cable products. Kabeli i Provoda (Cables and Wires). (in Russian) [Д. И. Белый. Кабели и провода. 1, (332), 8-15 (2012).].
2. L. A. Vorontsova, V. V. Maslov, I. B. Peshkov. Aluminum and aluminum-based alloys in electrical products. Мoscow. Energiya (1971) 224 p. (in Russian) [Л. А. Воронцова, В. В. Маслов, И. Б. Пешков. Алюминий и алюминиевые сплавы в электротехнических изделиях. М. Энергия. (1971) 224 с.].
3. M. Yu. Murashkin, I. Sabirov, V. U. Kazykhanov. Journal of Materials Science. 48, 4501-4509 (2013). Crossref
4. I. Sabirov, M. Yu. Murashkin, R. Z. Valiev. Materials Science & Engineering A. 560, 1-24 (2013).
5. I. V. Aleksandrov, R. G. Chembarisova, V. D. Sitdikov, G. I. Raab, V. U. Kazykhanov. The Physics of Metals and Metallography. 104 (3), 306-314 (2007).
6. R. Valiev, M. Murashkin, E. Bobruk, G. Raab. Mat. Trans. 50 (1) 87-91 (2009).
7. Georgy J. Raab, Ruslan Z. Valiev, Terry C. Lowe, Yuntian T. Zhu. Materials Science and Engineering A. 382, 30-34 (2004).
8. Patent applicaton No. 2013156136 dated 17.12.2013. Method of continuous equal-channel angular pressing of metallic rod-shaped billets. G. I. Raab, E. I. Fakhretdinova, V. M. Kapitonov, R. Z. Valiev [Заявка на изобретение № 2013156136 от 17.12.2013. Способ непрерывного равноканального углового прессования металлических заготовок в виде прутка. Г. И. Рааб, Э. И. Фахретдинова, В. М. Капитонов, Р. З. Валиев.].
9. M. Y. Murashkin, E. V. Bobruk, A. R. Kil'mametov, R. Z. Valiev. Structure and mechanical properties of aluminum alloy 6061 subjected to equal-channel angular pressing in parallel channels. The Physics of Metals and Metallography. 108 (4), 415-423 (2009). (in Russian) [М. Ю. Мурашкин, Е. В. Бобрук, А. Р. Кильмаметов, Р. З. Валиев. Физика металлов и металловедение. 108 (4), 415-423 (2009).].
10. M. V. Markushev, M. Yu. Murashkin. Materials Science and Engineering A. 367 (1-2), 234-242 (2004).
11. E Bobruk, I Sabirov, V Kazykhanov, R Valiev and M Murashkin. IOP Conf. Ser.: Mater. Sci. Eng. 63 012116 (2014).
12. I. Sabirov, M. T. Perez-Prado, M. Murashkin, J. M. Molina-Aldareguia, E. V. Bobruk, N. F. Yunusova, R. Z. Valiev. International Journal Material Forming. 3 (1), 411-414 (2010).
13. TU 16-705.493-2006 Rods from aluminum alloys. Technical specificatons (in Russian). [TУ 16-705.493-2006. Катанка из алюминиевого сплава. Технические условия.].

Similar papers