Electroplastic effect and interaction of an electrical impulse with a conductor

O.B. Skvortsov, V.I. Stashenko ORCID logo , O.A. Troitsky show affiliations and emails
Received: 27 September 2021; Revised: 08 October 2021; Accepted: 01 November 2021
This paper is written in Russian
Citation: O.B. Skvortsov, V.I. Stashenko, O.A. Troitsky. Electroplastic effect and interaction of an electrical impulse with a conductor. Lett. Mater., 2021, 11(4) 473-478
BibTex   https://doi.org/10.22226/2410-3535-2021-4-473-478


The dependence of the vibration response of the conductor on the action of an electric pulse as an interference of damped oscillations of the acceleration value generated at the leading and trailing edges of the electric pulse when the duration of the Timp of the electric pulse changes.The additional effect of electric currents on metals in the process of their machining has found wide practical application. This combination is used in cutting, rolling, drawing, flattening, and it allows one to increase the ductility of the metal and improve its mechanical properties. The physics of the processes of electrical impact remains largely incomprehensible. A detailed analysis of the processes of forming a vibration response in conductors to the action of electrical impulses made it possible to exclude a number of physical effects previously proposed to explain the effect on mechanical processes in conductive materials during their mechanical processing. It has been experimentally proven that the dominant mechanism for the formation of a vibrational response to the effect of electrical impulses is the action of shock mechanical effects at the moments of the beginning of the leading and trailing edges of an electrical impulse. There is a linear dependence of the magnitude of the vibration response on the magnitude of the electrical impact. For conductors, bending modes of vibration are dominant and the dependence of the polarity of the vibrational response on the polarity of the electrical impact is characteristic. Vibrations arising in the process of exposure are not associated with a smooth increase in the electric current through the conductor, as well as with a constant level of current during the action of an electric pulse. Vibration frequencies are characteristic of the processes of formation of mechanical vibration of the conductor and are significantly lower than the vibration frequencies in the material of the conductor, determined by the vibroplastic effect. Analysis shows that it is possible to control such a tunable vibration action on the metal being processed. This multi-frequency treatment can be combined with additive heat treatment. The results obtained make it possible to substantiate the choice of the parameters of electrical impulses when processing metals using the electroplastic effect.

References (21)

1. V. N. Poduraev. Cutting with vibrations. Moscow, Mashinostroyeniye (1979) 350 p. (in Russian) [В. Н. Подураев Обработка резанием с вибрациями. Москва, Машиностроение (1979) 350 с.].
2. Patent RF № 2426629, 2011. (in Russian) [Патент РФ № 2426629, 2011.].
3. Patent RF № 2585920, 2016. (in Russian) [Патент РФ № 2585920, 2016.].
4. Patent RF № 2544721, 2015. (in Russian) [Патент РФ № 2544721, 2015.].
5. Patent RF № 2624877, 2017. (in Russian) [Патент РФ № 2624877, 2017.].
6. Patent RF № 2321469, 2008. (in Russian) [Патент РФ № 2321469, 2008.].
7. Patent RF № 2044781, 1995. (in Russian) [Патент РФ № 2044781, 1995.].
8. O. A. Troitsky, V. I. Stashenko, V. S. Savenko, O. B. Skvortsov, S. D. Samuylov, E. A. Pravotorova, V. S. Tereshchuk. Impact of current pulses and microwave studies on structural materials. Electrodynamic and electrochemical effects in conductors. Moscow, Kim L. A. (2019) 278 p. (in Russian) [О. А. Троицкий, В. И. Сташенко, В. С. Савенко, О. Б. Скворцов, С. Д. Самуйлов, Е. А. Правоторова, В. С. Терещук. Воздействия импульсами тока и СВЧ-изучением на конструкционные материалы. Электродинамические и электрохимические эффекты в проводниках. Москва, Ким Л. А. (2019) 278 с.].
9. O. A. Troitsky, V. I. Stashenko, O. B. Skvortsov, V. S. Savenko, S. D. Samuilov, V. S. Tereshchuk, S. V. Zaitsev, A. M. Ivanov. Intense plastic deformation of metal under current and microwave impacts. New data and patterns. Moscow, Kim L. A. (2020) 342 p. (in Russian) [О. А. Троицкий, В. И. Сташенко, О. Б. Скворцов, В. С. Савенко, С. Д. Самуйлов, В. С. Терещук, С. В. Зайцев, А. М. Иванов. Интенсивная пластическая деформация металла при токовых и СВЧ-воздействиях. Новые данные и закономерности. Москва, Ким Л. А. (2020) 342 с.].
10. D. N. Lyubimov, V. A. Ryzhikov. Physicochemical processes during friction: Textbook. Allowance. Novocherkassk, YURSTU (2003) 142 p. (in Russian) [Д. Н. Любимов, В. А. Рыжиков. Физико-химические процессы при трении. Новочеркасск, ЮРГТУ (2003) 142 с.].
11. E. V. Kuznetsov. Fundamental and applied problems of technology and technology. 3 (293), 38 (2012). (in Russian) [Е. В. Кузнецов Фундаментальные и прикладные проблемы техники и технологии. 3 (293), 38 (2012).].
12. V. N. Morozenko, E. V. Kuznecov. Izvestija RAN. Metally. 3, 104 (2000).
13. L. B. Pervukhin, S. V. Serikov, I. K. Ustinov, O. D. Churkin. Vestnik MGTU. Ser. Mechanical Engineering, 184 (2011). (in Russian) [Л. Б. Первухин, С. В. Сериков, И. К. Устинов, О. Д. Чуркин. Вестник МГТУ Сер. «Машиностроение», 184 (2011).].
14. I. L. Bataronov. Mechanisms of the influence of the electric field and electric current on the plastic deformation of metals. Dissertation for the degree of Doctor of Physical and Mathematical Sciences. Voronezh, VGTU (2000) 280 p. (in Russian) [И. Л. Батаронов. Механизмы влияния электрического поля и электрического тока на пластическую деформацию металлов. Диссертация на соискание ученой степени доктора физико-математических наук. Воронеж, ВГТУ (2000) 280 с.].
15. A. L. Surkaev. Investigation of high-energy impulse processes in condensed media based on the electrical explosion of conductors. Dissertation for the degree of Doctor of Technical Sciences. Volgograd (2017) 279 p. (in Russian) [А. Л. Суркаев Исследование высокоэнергетических импульсных процессов в конденсированных средах на основе электрического взрыва проводников. Диссертация на соискание ученой степени доктора технических наук. Волгоград (2017) 279 с.].
16. L. Guan, G. Tang, P. K. Chu. Recent advances and challenges in electroplastic manufacturing processing of metals. J. Mater. Res. 25 (7), 1216 (2010).
17. E. M. Purcell, D. J. Morin. Electricity and magnetism. Harvard, Cambridge University Press (2013) 868 p. Crossref
18. K. F. Sergeychev, D. M. Karfidov, M. V. Shepovalov. Journal of Radioelectronics. 7, 12 (2015). (in Russian) [К. Ф. Сергейчев, Д. М. Карфидов, М. В. Шеповалов. Журнал радиоэлектроники. 7, 12 (2015).].
19. O. B. Skvortsov. Journal: Science and Innovation. 6, 17 (2020). (in Russian) [О. Б. Скворцов. Инженерный журнал: наука и инновации. 6, 17 (2020).]. Crossref
20. I. S. Golovin. Internal friction and mechanical spectroscopy of metallic materials: textbook. Moscow, MISiS (2012) 247 p. (in Russian) [И. С. Головин. Внутреннее трение и механическая спектроскопия металлических материалов. Москва, МИСиС (2012) 247 с.].
21. Strength, stability, vibrations. Handbook in three volumes. V.1 (Ed. by I. A. Birger, Ya. G. Panovko). Moscow, Mechanical Engineering (1988) 831 p. (in Russian) [Прочность, устойчивость, колебания. Справочник в трех томах. Т.1. (под ред. И. А. Биргера, Я. Г. Пановко). Москва, Машиностроение (1988) 831 с.].

Similar papers