Gradient of strength and microstructure after deformation by free torsion of metal bar

A.P. Zhilyaev, A.G. Raab, G.I. Raab, I.S. Kodirov show affiliations and emails
Received 25 November 2019; Accepted 30 November 2019;
Citation: A.P. Zhilyaev, A.G. Raab, G.I. Raab, I.S. Kodirov. Gradient of strength and microstructure after deformation by free torsion of metal bar. Lett. Mater., 2019, 9(4s) 571-576
BibTex   https://doi.org/10.22226/2410-3535-2019-4-571-576

Abstract

The gradient structure of a steel bar by torsion shows a mean grain size of  1 µm 
 at the edge region and about 5 µm in the center of the bar.The article presents the results of the study and analysis of the structure, properties and deformation parameters of a long-length bar of a circular cross-section from grade 10 steel obtained using severe plastic deformation (SPD) by free torsion at a temperature of 600°C. Using computer simulations with Deform 3D software, the stress-strain state of the samples, including the distribution of accumulated strain, average stresses, and thermal field, are investigated. A physical experiment was carried out, the structure parameters and microhardness in the longitudinal section of the samples after deformation were investigated. It was shown that the free-torsion SPD method provided a non-uniform accumulation of ultrahigh strains up to 6 in long-length metal bars of a circular cross-section, the formation of a gradient type structure with a mean grain size from 1 to 7 μm and with a gradient in mechanical properties. The effect of localization of deformation during uniform torsion of the workpiece was revealed, at the same time, the temperature of the bar during severe plastic deformation increased up to 230°C. EBSD analysis revealed a gradient structure of steel specimens with a mean grain size of about 1 µm near the surface area and ~5 µm near the central area.

References (20)

1. A. P. Zhilyaev, T. G. Langdon. Prog. Mater. Sci. 53, 893 (2008). Crossref
2. R. Z. Valiev, T. G. Langdon. Prog. Mater. Sci. 51, 881 (2006). Crossref
3. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Obyemnyye nanostrukturnyye materialy: fundamental'nyye osnovy i primeneniye. St. Petersburg, Eco-Vector (2017) 480 p. (in Russian) [Р. З. Валиев, А. П. Жиляев, Т. Г. Ленгдон. Объемные наноструктурные материалы: фундаментальные основы и применения. Санкт-Петербург, Эко-Вектор. (2017) 480 с.].
4. V. M. Segal, V. I. Reznikov, A. E. Dobryshevshiy, V. I. Kopylov. Russian metallurgy (Metally). 1, 99 (1981).
5. F. Z. Utyashev, G. I. Raab. Deformatsionnyye metody polucheniya i obrabotki ul'tramelkozernistykh i nanostrukturnykh materialov. Ufa, Gilem (2013) 376 p. (in Russian) [Ф. З. Утяшев, Г. И. Рааб. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов. Уфа, Гилем (2013) 376 c.].
6. G. A. Salishchev, O. R. Valiakhmetov, R. M. Galeyev. J. Mater. Sci. 28, 2898 (1993). DOI: /. Crossref
7. S. V. Dobatkin, X. Sauvage. Volumetric nanostructured multiphase ferrous and non-ferrous alloys. In: Volumetric nanostructured materials (ed. by M. D. Tsekhetbauer, Yu. T. Zhu). Weinheim, WILEY-VCH Verlag GmbH & Co. (2009) pp. 571- 603.
8. A. M. Glezer, E. A. Levashov, M. Yu. Koroleva. Konstruktsionnyye nanomaterialy (study guide). Mоscow, MISiS (2011) 176 p. (in Russian) [А. М. Глезер, Е. А. Левашов, М. Ю. Королёва. Конструкционные наноматериалы (учебное пособие). Москва, МИСиС (2011) 176 с.].
9. A. I. Rudskoy. Nanotekhnologii v metallurgii. St. Petersburg, Nauka (2007) 185 p. (in Russian) [А. И. Рудской. Нанотехнологии в металлургии. Санкт-Петербург, Наука (2007) 185 с.].
10. G. I. Raab, A. G. Raab, V. G. Shibakov. Metallurgy. 54 (2) 423 (2015).
11. U. M. Lakhtin. Osnovy vybora materialov i uprochnyayushchey tekhnologii. Konstruktsionnyye stali: Textbook. Moscow, MADI. (1993) 80 p. (in Russian) [Ю. М. Лахтин. Основы выбора материалов и упрочняющей технологии. Конструкционные стали: Учебное пособие. Москва, МАДИ (1993) 80 с.].
12. G. I. Raab, A. G. Raab. Patent 2347632 RF. 2009. (in Russian) [Г. И. Рааб, А. Г. Рааб. Патент 2347632 РФ. 2009].
13. A. G. Raab, M. V. Chukin. IV All-Russian Conference on Nanomaterials: collection of articles mat. Moscow, IMET RAS (2011) p. 43. (in Russian) [А. Г. Рааб, М. В. Чукин. IV Всероссийская конференция по наноматериалам: сб. мат. Москва, ИМЕТ РАН (2011) с. 43.].
14. M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, G. I. Raab, R. Z. Valiev. Letters on materials. 7, 29 (2017). (in Russian) [М.В. Караваева, М.М. Абрамова, Н.А. Еникеев, Г.И. Рааб, Р.З. Валиев. Письма о материалах. 7, 29 (2017).]. Crossref
15. A. P. Zhilyaev. Letters on materials. 5, 276 (2015). Crossref
16. R. M. Imayev, А. А. Nazarov, R. R. Mulyukov, G. F. Khasanova. Letters on materials. 4, 295 (2014). Crossref
17. A. G. Raab, G. I. Raab, V. I. Semenov, G. N. Aleshin, U. N. Podrezov, N. I. Danilenko. Forging and Stamping Production. Material Working by Pressure. 12, 14 (2013). (in Russian) [А. Г. Рааб, Г. И. Рааб, В. И. Семенов, Г. Н. Алешин, Ю. Н. Подрезов, Н. И. Даниленко. Кузнечно-штамповочное производство. Обработка материалов давлением. 12, 14 (2013).].
18. https://www.deform.com/products/deform-3d/.
19. V. N. Danilenko, S. Y. Mironov, A. N. Belyakov, A. P. Zhilyaev. Industrial Laboratory. 78, 28 (2012). (in Russian) [В. Н. Даниленко, С. Ю. Миронов, А. Н. Беляков, А. П. Жиляев. Заводская лаборатория. Диагностика материалов. 78, 28 (2012).].
20. A. P. Zhilyaev. Letters on Materials. 9, 142 (2019). (in Russian) [А.П. Жиляев. Письма о материалах. 9, 142 (2019).]. Crossref

Similar papers

Funding