Energy Stored during High Pressure Torsion of Pure Metals

Received 07 February 2019; Accepted 22 February 2019;
This paper is written in Russian
Citation: A.P. Zhilyaev. Energy Stored during High Pressure Torsion of Pure Metals. Lett. Mater., 2019, 9(1) 142-146
BibTex   https://doi.org/10.22226/2410-3535-2019-1-142-146

Abstract

Temperature increase as a function of time (number of turns) for (a) fcc (Al, Cu, Ni) and (b) hcp (Zn, Ti, Zr) metals subjected to HPT.In the paper a problem of estimating the energy released during plastic deformation of pure metals by the high-pressure torsion (HPT) method is discussed. The work accomplished during plastic deformation by torsion under high pressure implies considerable heating of the sample. However, measurements using thermocouples located near the deformation zone show a temperature rise in the range of 5-50 degrees. As an example, pure nickel was chosen, for which there are experimental data on the kinetics of the formation of vacancies and dislocations in the process of torsion under high pressure and data on the refinement of the microstructure in the HPT process. It has been established that the amount of heat expended in heating the massive anvils would be sufficient to evaporate the nickel disc. The energy of formation of crystal structure defects (vacancies, dislocations, and high-angle grain boundaries) in nickel subjected to high-pressure torsion is also estimated. The correct equation for calculating the magnitude of the equivalent strain at simple shear is presented. It is shown that this calculation leads to a good agreement between the values of plastic energy and the work expended on the formation of the defective structure and heating of the sample-anvil system. Using the von Mises equation for calculations leads to the value of the work done during plastic deformation by torsion, which is two orders of magnitude higher than the upper estimate of the energy spent on heating the anvil and the formation of defects (vacancies, dislocations and new grain boundaries) of the crystal lattice. An asymptotic equation is proposed for calculating the value of equivalent strains for small (<1) and large (> 2) shear strain degrees

References (20)

1. R. Z. Valiev, A. V. Korznikov, R. R. Mulyukov. Mater. Sci. Eng. A. 168, 141 (1993). Crossref
2. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk nanostructured materials: Fundamentals and applications. New Jersey, Wiley & Sons (2014) 450 p.
3. R. Z. Valiev, T. G. Langdon. Progr. Mater. Sci. 51, 881 (2006). Crossref
4. А. P. Zhilyaev, T. G. Langdon. Progr. Mater. Sci. 53, 893 (2008). Crossref
5. A. Gimazov, A. Zhilyaev. Let. Mater. 6, 237 (2016). (in Russian) [А. А. Гимазов, А. П. Жиляев. Письма о материалах. 6, 237 (2016).]. Crossref
6. A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar, T. G. Langdon. Acta Mater. 51, 753 (2003). Crossref
7. A. A. Mukhametgalina, A. A. Samigullina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov, Y. R. Zagidullina, N. Y. Parkhimovich, V. V. Rubanik, Y. V. Tsarenko. Let. Mater. 7, 85 (2017). (in Russian) [А. А. Мухаметгалина, А. А. Самигуллина, С. Н. Сергеев, А. П. Жиляев, А. А. Назаров, Ю. Р. Загидуллина, Н. Ю. Пархимович, В. В. Рубаник, Ю. В. Царенко. Письма о материалах. 7, 85 (2017).]. Crossref
8. A. P. Zhilyaev, V. A. Popov, A. R. Sharafutdinov, V. N. Danilenko. Let. Mater. 1, 203 (2011).(in Russian) [А. П. Жиляев, В. А. Попов, А. Р. Шарафутдинов, В. Н. Даниленко. Письма о материалах. 1, 203 (2011).]. Crossref
9. M. T. Perez-Prado, A. Sharafutdinov, A. P. Zhilyaev. Mater. Let. 64, 211 (2010). Crossref
10. R. Z. Valiev, A. P. Zhilyaev, T. G. Langdon. Bulk Nanostructured Materials: Fundamentals and Applications. Saint-Petersburg, Eco-Vector (2017) 480 p. (in Russian) [Р. З. Валиев, А. П. Жиляев, Т. Дж. Лэнгдон. Объемные наноструктурные материала: фундаментальные основы и применения. Санкт-Петербург, Эко-вектор (2017) 480 с.].
11. D. Yamaguchi, Z. Horita, M. Nemoto, T. G. Langdon. Scripta Mater. 41, 791 (1999). Crossref
12. A. P. Zhilyaev, J. M. Garcıa-Infanta, F. Carreno, T. G. Langdon, O. A. Ruano. Scripta Mater. 57, 763 (2007). Crossref
13. Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki, K. Tsuchiya. Mater. Trans. 49, 7 (2008). Crossref
14. K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama, R. Pippan. Mater. Sci. Eng. A. 528, 7301 (2011). Crossref
15. K. Edalati, Yu. Hashiguchi, P. H. R. Pereira, Z. Horita, T. G. Langdon. Mater. Sci. Eng. A. 714, 167 (2018). Crossref
16. А. P. Zhilyaev, T. G. Langdon. IOP 2014 IOP Conf. Series: Mater. Sci. Eng. 63, 012052-1-012052-7 (2014). Crossref
17. E. A. Korznikova. Issledovaniye kontsentratsii vakansiy i plotnosti dislokatsiy v GTSK metallakh posle intensivnoy plasticheskoy deformatsii. Dissertacija na soiskanie stepeni kandidata tehnicheskih nauk. Ufa (2011) 140 p. (in Russian) [Исследование концентрации вакансий и плотности дислокаций в ГЦК металлах после интенсивной пластической деформации: дисс. канд. физ-мат наук. Уфа. 2011. 140 с.].
18. А. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Langdon. Scripta Mater. 44 (12), 2753 (2001). Crossref
19. S. Onaka. Phil. Mag. Let. 90, 633 (2010). Crossref
20. H. P. Stuwe. Adv Eng. Mater. 5 (3), 291 (2003). Crossref

Cited by (3)

1.
A. Zhilyaev, A. Raab, G. Raab, I. Kodirov. Lett. Mater. 9(4s), 571 (2019). Crossref
2.
D. Gunderov, V. Astanin. Metals. 10(3), 415 (2020). Crossref
3.
D. Aksenov, R. Asfandiyarov, G. Raab, M. Baryshnikov. Lett. Mater. 11(1), 95 (2021). Crossref

Similar papers