High strength and fatigue properties of Mg-Zn-Ca alloys after severe plastic deformation

E.V. Vasilev, V.I. Kopylov, M.L. Linderov ORCID logo , А.I. Brilevsky ORCID logo , D.L. Merson, A.Yu. Vinogradov show affiliations and emails
Received 21 January 2019; Accepted 27 February 2019;
Citation: E.V. Vasilev, V.I. Kopylov, M.L. Linderov, А.I. Brilevsky, D.L. Merson, A.Yu. Vinogradov. High strength and fatigue properties of Mg-Zn-Ca alloys after severe plastic deformation. Lett. Mater., 2019, 9(2) 157-161
BibTex   https://doi.org/10.22226/2410-3535-2019-2-157-161


The use of a hybrid deformation processing scheme combining warm equal-channel angular pressing and cold rotary swaging allows achieving static and fatigue strength values for the ZX40 magnesium alloyMagnesium alloys are the lightest metallic structural materials with an outstanding specific strength. This makes them appealing for a wide range of applications in “green” transportation where weight saving is of major concern. Another emerging application area for modern Mg-based alloys is in the biomedical domain where they are considered as bioabsorbable temporary implants, and where the worldwide market is expanding particularly rapidly in parallel with the surging research. Requirements for mechanical properties - strength, ductility and fatigue resistance - of implants in orthopaedics are stringent. Therefore, a broad variety of processing routes have been proposed in the past decade to tailor the microstructure in order to optimize the properties. In the present brief communication, we demonstrate that using a hybrid deformation processing schedule involving warm equal-channel angular pressing (ECAP) on the first stage and cold rotary swaging on the second dramatically improves the tensile and fatigue properties of the magnesium alloy ZX40. Due to a combined effect of significant grain refinement and dislocation storage after rotary swaging, the ultimate tensile strength and the conventional fatigue limit achieved very high values (for this class of alloys) of 380 MPa and 115 MPa, respectively. Preliminary results of the microstructural investigations are discussed briefly.

References (28)

1. B. P. Zhang, Y. Wang, L. Geng. Research on Mg-Zn-Ca Alloy as Degradable Biomaterial, Biomaterials - Physics and Chemistry. In: R. Pignatello (Ed.). Biomaterials, InTech (2011). Crossref
2. J. Hofstetter, M. Becker, E. Martinelli, A. M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P. J. Uggowitzer, J. F. Löffler. JOM. 66 (4), 566 (2014). Crossref
3. J. Hofstetter, E. Martinelli, S. Pogatscher, P. Schmutz, E. Povoden-Karadeniz, A. M. Weinberg, P. J. Uggowitzer, J. F. Löffler. Acta Biomaterialia. 23, 347 (2015). Crossref
4. Y. Estrin, A. Vinogradov. International Journal of Fatigue. 32(6), 898 (2010). Crossref
5. A. Vinogradov, A. Washikita, K. Kitagawa, V. I. Kopylov. Materials Science and Engineering A. 349(1-2), 318 (2003). Crossref
6. L. R. Saitova, H. W. Höppel, M. Göken, I. P. Semenova, R. Z. Valiev. International Journal of Fatigue. 31(2), 322 (2009). Crossref
7. A. Y. Vinogradov, V. V. Stolyarov, S. Hashimoto, R. Z. Valiev. Materials Science and Engineering A. 318 (1-2) 163 (2001).
8. R. B. Heywood. Designing against fatigue of metals. Reinhold, New York (1962) 436 p.
9. V. Patlan, A. Vinogradov, K. Higashi, K. Kitagawa. Materials Science and Engineering A. 300 (1-2), 171 (2001). Crossref
10. Y. Estrin, A. Vinogradov. Acta Materialia. 61(3), 782 (2013). Crossref
11. A. Vinogradov. Advanced Engineering Materials. 17(12), 1710 (2015). Crossref
12. S. R. Agnew, J. A. Horton, T. M. Lillo, D. W. Brown. Scripta Materialia. 50(3), 377 (2004). Crossref
13. I. P. Semenova, G. K. Salimgareeva, V. V. Latysh, R. Z. Valiev. Solid State Phenomena. 140, 167 (2008). Crossref
14. M. Wang, Y. Wang, A. Huang, L. Gao, Y. Li, C. Huang.Materials. 11(11), 2261 (2018). Crossref
15. J. Muller, M. Janecek, L. Wagner. Materials Science Forum. 584-586, 858 (2008). Crossref
16. W. M. Gan, Y. D. Huang, R. Wang, G. F. Wang, A. Srinivasan, H. G. Brokmeier, N. Schell, K. U. Kainer, N. Hort. Materials and Design. 63, 83 (2014). Crossref
17. K. Kubok, L. Lityńska-Dobrzyńska, J. Wojewoda-Budka, A. Góral, A. Dębski. Archives of Metallurgy and Materials. 58 (2), 329 (2013). Crossref
18. H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj. Materials and Corrosion. 65(12), 1178 (2014). Crossref
19. B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng. Materials Science and Engineering: C. 31(8), 1667 (2011). Crossref
20. A. Vinogradov, E. Vasilev, M. Linderov, D. Merson. Metals. 6(12), 304 (2016). Crossref
21. H. R. Bakhsheshi-Rad, M. R. Abdul-Kadir, M. H. Idris, S. Farahany. Corrosion Science. 64, 184 (2012). Crossref
22. X. N. Gu, W. R. Zhou, Y. F. Zheng, Y. Cheng, S. C. Wei, S. P. Zhong, T. F. Xi, L. J. Chen. Acta Biomaterialia. 6(12), 4605 (2010). Crossref
23. D. Bian, W. Zhou, Y. Liu, N. Li, Y. Zheng, Z. Sun. Acta Biomaterialia. 41, 351 (2016). Crossref
24. N. Martynenko, E. Lukyanova, V. Serebryany, D. Prosvirnin, V. Terentiev, G. Raab, S. Dobatkin, Y. Estrin. Materials Letters. 238, 218 (2019). Crossref
25. V. V. Ogarevic, R. I. Stephens. Annual Review of Materials Science. 20(1), 141 (1990). Crossref
26. S. Biswas, S. S. Dhinwal, S. Suwas. Acta Materialia. 58 (9), 3247 (2010). Crossref
27. B. Beausir, S. Suwas, L. S. Tóth, K. W. Neale, J.-J. Fundenberger. Acta Materialia. 56(2), 200 (2008). Crossref
28. V. N. Serebryany, T. M. Ivanova, T. I. Savyolova, S. V. Dobatkin. Solid State Phenomena. 160, 159 (2010). Crossref

Similar papers


1. Ministry of Science of RF - grant-in-aid RFMEFI58317X0070