Elasto-elastic composite materials with a polymer matrix based on ultrafine iron and polyethylene

Y.V. Kabirov, E.N. Sidorenko, N.V. Prutsakova, M.V. Belokobylsky, A.O. Letovaltsev, E.V. Chebanova, E.B. Rusakova show affiliations and emails
Received 08 August 2020; Accepted 26 October 2020;
This paper is written in Russian
Citation: Y.V. Kabirov, E.N. Sidorenko, N.V. Prutsakova, M.V. Belokobylsky, A.O. Letovaltsev, E.V. Chebanova, E.B. Rusakova. Elasto-elastic composite materials with a polymer matrix based on ultrafine iron and polyethylene. Lett. Mater., 2021, 11(1) 17-21
BibTex   https://doi.org/10.22226/2410-3535-2021-1-17-21

Abstract

Polymer сomposites with a concentration of 20 wt. % polyethylene and 80 wt. % iron exhibit extrinsic piezoresistance of about 30% in the pressure range of 0–170 kPaIn order to develop multifunctional materials that respond to external mechanical pressure and magnetic field, as well as have radio-absorbing properties, polymer composites based on low density polyethylene (LDPE) and ultrafine iron (Fe) have been synthesized in this work. The composites are synthesized at a temperature of 170°C and a pressure of 50 MPa in the presence of hydrocarbons. Phase composition of the obtained samples is studied by X-ray diffraction and optical microscopy. The electrical, piezoresistive, magnetoresistive properties of the samples, as well as their absorption capacity of electromagnetic field in the microwave frequency range are investigated. The samples near the percolation threshold оf 20 % LDPE / 80 % Fe weight percent exhibit high extrinsic piezoresistance values оf about 28 % at a pressure of 170 kPa, with some hysteresis and have of about 3 % tunnel magnetoresistance value in weak fields up to 4 kOe. The sensitivity of the 20 % LDPE / 80 % Fe sample in the investigated 0 –170 kPa pressure range reaches the value of 94.1 μΩ / Pa. Furthermore, samples near the percolation threshold demonstrate significant microwave energy absorption in the 3 –12 GHz range at a level of up to 8 dB. The effect of synthesis processes — the melting and crystallization on polyethylene structural changes in the iron microgranules presence is studied by X-ray diffraction method. It is shown that after synthesis the average size of the perfect regions of polyethylene is increased by 40 %, from 9 to 13 nm, and the degree of crystallinity also grows from 55 % (before synthesis) to 67 % (after synthesis). The estimation of prepared composites porosity which plays a significant role in their elasto-elastic properties gives the value of 40 % for samples near the 20 % LDPE  / 80 % Fe percolation threshold.

References (23)

1. M. H. G. Wichmann, S. T. Buschhorn, J. Gehrmann, K. Schulte. Phys. Rev. B. 80 (24), 245437 (2009). Crossref
2. Y. V. Kabirov, A. S. Bogatin, E. N. Sidorenko, M. V. Belokobylsky, A. S. Mikheykin, A. O. Letovaltsev, A. L. Bulanova, N. V. Prutsakova. Letters on Materials. 9 (2), 223 (2019). (in Russian) [Ю. В. Кабиров, А. С. Богатин, Е. Н. Сидоренко, М. В. Белокобыльский, А. С. Михейкин, А. О. Летовальцев, А. Л. Буланова, Н. В. Пруцакова. Письма о материалах. 9 (2), 223 (2019).]. Crossref
3. X.-W. Zhang, Y. Pan, Q. Zheng, X.-S. Yi. J. Polym. Sci. Part B. Polymer Physics. 38, 2739 (2000).%3C2739::AID-POLB40%3E3.0.CO;2-O. Crossref
4. X. Zhang, Z. Yao, Z. Ge, K. Yao, R. Tao, T. Yu, J. Han. Journal of Testing and Evaluation. 45 (1), 303 (2017). Crossref
5. I. A. Belyaeva, M. Shamonin, E. Y. Kramarenko. Polymer. 127, 119 (2017). Crossref
6. C. Bartolozzi, L. Natale, F. Nori, G. Metta. Nature Materials. 15 (9), 921 (2016). Crossref
7. G. V. Stepanov, D. A. Semerenko, A. V. Bakhtiiarov, P. A. Storozhenko. J. Supercond. Nov. Magn. 26, 1055 (2013). Crossref
8. I. Bica. J. Ind. Eng. Chem. 17 (1), 83 (2011). Crossref
9. M. Rusu, N. Sofian, D. Rusu, E. Neagu, R. Neagu. J. Polym. Eng. 21 (5), 469 (2001). Crossref
10. M. Tasdemir, H. O. Gulsoy. Intern. J. Polym. Mater. 57, 258 (2008). Crossref
11. A. Gungor. J. Appl. Polym. Sci. 99, 2438 (2006). Crossref
12. B. Jaffe, W. Cook, H. Jaffe. Piezoelectric ceramics. Moscow, Mir (1974) 288 p. (in Russian) [Б. Яффе, У. Кук, Г. Яффе. Пьезоэлектрическая керамика. Москва, Мир (1974) 288 с.].
13. D. Li, L. Zhou, H. Wang, L. He, X. Yang. Materials. 12, 1746 (2019). Crossref
14. S. Kirkpatrick. Rev. Mod. Phys. 45 (4), 574 (1973). Crossref
15. S. A. Gridnev, Yu. E. Kalinin, A. V. Sitnikov, O. V. Stogney. Nonlinear phenomena in nano - and microheterogeneous systems. Moscow, Binomial. Knowledge Laboratory (2012) 352 p. (in Russian) [С. А. Гриднев, Ю. Е. Калинин, А. В. Ситников, О. В. Стогней. Нелинейные явления в нано - и микрогетерогенных системах. Москва, Бином. Лаборатория знаний (2012) 352 с.].
16. Yu. V. Kabirov, V. G. Gavrilyathenko, A. S. Bogatin, T. I. Chupachina, T. V. Gavrilyatchenko. Phys. Solid State. 57 (1), 16 (2015). (in Russian) [Ю. В. Кабиров, В. Г. Гавриляченко, А. С. Богатин, Т. И. Чупахина, Т. В. Гавриляченко. ФТТ. 57 (1), 16 (2015).].
17. D. Zhang, R. Chung, A. B. Karki, F. Li, D. P. Young, Zh. Guo. J. Phys. Chem. C. 114, 212 (2010). Crossref
18. A. F. Latypova, Yu. E. Kalinin. Bulletin of Voronezh state technical University. 8 (6), 70 (2012). (in Russian) [А. Ф. Латыпова, Ю. Е. Калинин. Вестник Воронежского государственного технического университета. 8 (6), 70 (2012).].
19. V. A. Zhuravlev, V. I. Suslyaev, E. Yu Korovin, O. A. Dotsenko. Electronic scientific journal “Investigated in Russia”. 35, 404 (2010). (in Russian) [В. А. Журавлев, В. И. Сусляев, Е. Ю. Коровин, О. А. Доценко. Электронный научный журнал «Исследовано в России». 35, 404 (2010).].
20. E. N. Sidorenko, E. Privalov, A. A. Demchenko, Yu. V. Kabirov, E. V. Chebanova, I. I. Nathan. Conference Proceedings. 2019 Radiation and Scattering of Electromagnetic Waves (RSEMW 2019). Danvers, IEEE Xplore Digital Library (2019) p. 464.
21. D. N. Kondratyev, V. G. Zhuravsky. Nanoindustry. 4, 14 (2008). (in Russian) [Д. Н. Кондратьев, В. Г. Журавский. Наноиндустрия. 4, 14 (2008).].
22. A. N. Lagarkov, L. V. Panina, A. K. Sarychev. Zh. Eksp. Teor. Fiz. 93, 215 (1987).
23. O. G. Maksimova, A. V. Maksimov, A. I. Moiseeva. J. Adv. Diel. 6 (1), 1650004 (2016). Crossref

Similar papers