SYNTHESIS OF COMPOSITE BASED W-Ni-AL SYSTEM BY THE ELECTRO-THERMAL EXPLOSION UNDER PRESSURE

A.S. Shchukin, A.V. Scherbakov, A.E. Sytschev, V.A. Shcherbakov
Received: 19 April 2018; Revised: 01 June 2018; Accepted: 03 June 2018
This paper is written in Russian
Citation: A.S. Shchukin, A.V. Scherbakov, A.E. Sytschev, V.A. Shcherbakov. SYNTHESIS OF COMPOSITE BASED W-Ni-AL SYSTEM BY THE ELECTRO-THERMAL EXPLOSION UNDER PRESSURE. Letters on Materials, 2018, 8(3) 274-277
BibTex   DOI: 10.22226/2410-3535-2018-3-274-277

Abstract

On the presented time dependences of pressure change and electrical resistance of the sample during the ETE of the reaction mixture W-Ni-Al, it is evident that the preheating time was 2.6 seconds, and the duration of the thermal explosion stage was 0.5 seconds.The experimental results of study the W– 10NiAl composite produced by means an electro-thermal explosion method (ETE) under pressure are presented. The basis of the ETE method is Joule heating of the sample pressed from the tungsten, nickel and aluminum powders, and consolidation of the hot synthesized product under pressure. For the first time, the possibility of synthesizing of W-10NiAl composites by the ETV method under pressure has been demonstrated. The formation of the phase composition, microstructure, and physico-mechanical characteristics of the synthesized composite were studied. It is shown that fast heating of the sample by the passing of electric current at the stage of pre-explosive heating (2.6 seconds) and thermal explosion (0.5 seconds) allowed synthesizing the composite and consolidating it to the minimum residual porosity. Short-term sample heating and high rate of exothermic synthesis resulted to avoid recrystallization of tungsten grains. Despite the high heating temperature (16000C), the tungsten grain size in the synthesized composite corresponds to the size of the initial tungsten particles in the reaction mixture. We find out that under the influence of an external load, deformation of tungsten grains occurs, as a result of which contact areas (contact zones) are formed on the surface of tungsten grains. The synthesized composite has high physical and mechanical properties: density - 15.7 kg/mm3, open porosity - less than 0.2%, compressive strength is 2400 ÷ 2600 MPa. Fracture surface of composite has mainly an intergrain character. Composite microhardness (Hµ) is 4.8 GPa.

References (20)

1.
N. M. Matveeva, E. V. Kozlov. Ordered phases in metallic systems. Moscow, Nauka (1989) 247 p. (in Russian) [Н. М. Матвеева, Э. В. Козлов. Упорядоченные фазы в металлических системах. Москва, Наука (1989) 247 с.]
2.
Yu. R. Kolobov. Diffusion-controlled processes at grain boundaries and plasticity of metallic polycrystals. Novosibirsk, Nauka (1998) 184 p. (in Russian) [Ю. Р. Колобов. Диффузионно-контролируемые процессы на границах зерен и пластичность металлических поликристаллов. Новосибирск, Наука (1998) 184 с.]
3.
Yu. R. Kolobov, E. N. Kablov, E. V. Kozlov, N. A. Koneva, K. B. Povarova. Structure and properties of intermetallic materials with nanophase hardening. Moscow, MISiS (2008) 328 p. (in Russian) [Ю. Р. Колобов, Е. Н. Каблов, Э. В. Козлов, Н. А. Конева, К. Б. Поварова. Структура и свойства интерметаллидных материалов с нанофазным упрочнением. Москва, МИСиС (2008) 327 с.]
4.
J. Popovič, P. Brož, J. Buršík. Intermetallics, 16(7), 884 (2008). DOI: 10.1016/j.intermet.2008.04.003
5.
S. Milenkovic, A. Schneider, G. Frommeyer. Intermetallics. 19(3), 342 (2011). DOI: 10.1016/j.intermet.2010.10.019
6.
A. W. Hassel, A. J. Smith, S. Milenkovic. Electrochim. Acta. 52(4), 1799 (2006). DOI: 10.1016/j.electacta.2005.12.061
7.
P. Brož, J. Buršík, Z. Stará. Chem. 136, 1915 (2005). DOI: 10.1007/s00706‑005‑0391‑y
8.
T. Takahashi, D. C. Dunand. Materials Science and Engineering. A192 / 193, 195 (1995).
9.
A. G. Merzhanov. Combustion processes and synthesis of materials. Chernogolovka, ISMAN (1998) 511 p. (in Russian) [А. Г. Мержанов. Процессы горения и синтез материалов. Черноголовка, ИСМАН (1998) 511 с.]
10.
A. E. Sytschev, D. Vrel, Yu. R. Kolobov, D. Yu. Kovalev, E. V. Golosov, A. S. Shchukin, S. G. Vadchenko. Int. Journal of SHS. 22(2), 110 (2013). DOI: 10.3103/S1061386213020118
11.
K. Kornienko, V. Kublii, O. Fabrichnaya, N. Bochvar. In: Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data · Light Metal Systems. Part 3. (Eds. G. Effenberg, S. Ilyenko). Landolt-Börnstein — Group IV Physical Chemistry (2005) 35 chapters. Al-Ni-W (Aluminium−Nickel−Tungsten). Chapter 34. DOI: 10.1007/10915998_34
12.
В. I. Itin, Yu. S. Nyborodenko. High-temperature synthesis of intermetallic compounds. Tomsk, Publishing house of Tomsk University (1989) 214 p. (in Russian) [В. И. Итин, Ю. С. Найбороденко. Высокотемпературный синтез интерметаллических соединений. Томск, Изд-во Томского ун-та (1989) 214 с.]
13.
M. A. Typkipa. In: Constitution diagrams of binary metallic systems. Handbook. V. 3 – 1. (Ed. by N. P. Lyakishev). Moskow, Mashinostroenie (1996) 872 p. Ni-W. Nickel-Tungster. P. 664 – 666. (in Russian) [M. А. Тыпкипа. В книге: Диаграммы состояния двойных металлических систем. Справочник в 3 т.: Т. 3 – 1. (Под ред. Н. П. Лякишева). Москва, Машиностроение (1996) 872 с. Ni-W. Никель-Вольфрам. C. 664 – 666.]
14.
T. V. Dobatkina. In: Constitution diagrams of binary metallic systems. Handbook. V. 1. (Ed. by N. P. Lyakishev). Moskow, Mashinostroenie (1996) 992 p. Al-W. Aluminum-Tungster. P. 235 – 236. (in Russian) [Т. В. Добаткина. В книге: Диаграммы состояния двойных металлических систем. Справочник в 3 т.: Т. 1. (Под ред. Н. П. Лякишева). Москва, Машиностроение (1996) 992 с. Al-W. Алюминий-Вольфрам. C. 235 – 236.]
15.
Ed. by H. Baker. ASM Handbook: Alloy Phase Diagrams. Vol. 3. Virginia, ASM International (1992) 800 p.
16.
A. S. Shchukin, S. G. Vadchenko, A. E. Sytschev. Universities' Proceedings. Powder Metallurgy аnd Functional Coatings. 2, 72 (2017). (in Russian) [Известия вузов. Порошковая металлургия и функциональные покрытия. 2, 72 (2017).] DOI: 10.17073/1997-308X-2017‑2‑72‑78
17.
A. V. Shcherbakov, V. Yu. Barinov, A. S. Shchukin, I. D. Kovalev, V. A. Shcherbakov, T. D. Malikina, A. I. Alhimenok. Fundamental research. 11(2), 344, (2017). (in Russian) [Щербаков А. В., Баринов В. Ю., Щукин А. С., Ковалев И. Д., Щербаков В. А., Маликина Т. Д., Альхименок А. И. Фундаментальные исследования. 11(2), 344, (2017).]
18.
V. T. Telepa, V. A. Shcherbakov, A. V. Shcherbakov. Letters on Materials. 6(4), 286 (2016). (in Russian) [В. Т. Телепа, В. А. Щербаков, А. В. Щербаков. Письма о материалах. 6(4), 286 (2016).] DOI: 10.22226/2410-3535-2016-4-286-289
19.
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, N. V. Sachkova. Letters on Materials. 6(3), 217 (2016). (in Russian) [В. А. Щербаков, А. Н. Грядунов, М. И. Алымов, Н. В. Сачкова. Письма о материалах. 6(3), 217 (2016).] DOI: 10.22226/2410-3535-2016-3-217-220
20.
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov. Letters on Materials. 7(4), 398 (2017). DOI: 10.22226/2410-3535-2017-4-398-401