The study of the elastic characteristics of carbon fiber with a 3D structure

V.S. Zhernakov, Y.S. Pervushin, P.V. Solovyev ORCID logo show affiliations and emails
Received 19 December 2018; Accepted 26 February 2019;
This paper is written in Russian
Citation: V.S. Zhernakov, Y.S. Pervushin, P.V. Solovyev. The study of the elastic characteristics of carbon fiber with a 3D structure. Lett. Mater., 2019, 9(2) 185-190
BibTex   https://doi.org/10.22226/2410-3535-2019-2-185-190

Abstract

The figure shows a modified matrix with piercing threads, on the basis of which a 3D structure is formed.Composite materials are now widely used in aircraft manufacturing, rocket production, shipbuilding, the petroleum and chemical industries. Multilayer composites are the most promising from the viewpoint of controlling their physical and mechanical properties, depending on the direction of external forces during operation. By changing the multilayer composite structure (the number of layers, the angles and the sequence of their stacking, the physical and mechanical properties of the composite components), it is possible to control their physical and mechanical characteristics in a given direction. The article presents the results of an analytical, experimental and finite-element exploration of the influence of a unidirectional spatial reinforcement of carbon fiber composite with cross-piercing on its elastic compliance coefficients and strength characteristics. A literature review of methods for determining the elastic characteristics of composite materials (CM) with 3D (spatial) structures is given. Methods of determining elastic characteristics of spatially reinforced composites described in the literature are based on the principle of splitting them into layers, in which a unidirectional layer characterized by nine elastic parameters is taken as the basis: three elastic moduli along the main axes of elastic symmetry E1, E2, E3, three shear moduli G12, G23, G13 and three Poisson coefficients ν12, ν23, ν13. From the analysis of the literature sources, it has been established that in determining the compliance coefficients of spatially reinforced composite materials, only the volume fraction of the reinforcing material and its elastic characteristics are taken into account. Studies of the stress-strain state of the matrix modified with a piercing thread showed that its elastic characteristics, in addition to the piercing thread volume content, were influenced by the geometrical parameters of the insertion, the elastic characteristics of the piercing thread impregnated with the matrix material, and the stress concentration on its boundary. This influence occurs in all ways of creating spatial structures formed by a system of three threads. The article also presents the results of the experimental determination of the spatially reinforced CM elastic characteristics and its comparison with the theoretical components of the elastic compliance tensor of a unidirectionally reinforced CM.

References (17)

1. A. K. Malmeyster, V. P. Tamuzh, G. A. Teters. Soprotivleniye zhestkikh polimernykh materialov. Riga, Zinatne (1972) 500 p. (in Russian) [А. К. Малмейстер, В. П. Тамуж, Г. А. Тетерс. Сопротивление жестких полимерных материалов. Рига, Зинатне (1972) 500 с.].
2. I. G. Zhigun, V. A. Polyakov. Svoystva prostranstvenno-armirovannykh plastikov . Ed. by Y. M. Tarnopolskiy. Riga, Zinatne (1978) 215 p. (in Russian) [И. Г. Жигун, В. А. Поляков. Свойства пространственно-армированных пластиков. Под ред. Ю. М. Тарнопольского. Рига, Зинатне (1978) 215 c.].
3. Y. M. Tarnopolskiy, I. G. Zhigun, V. A. Polyakov. Prostranstvenno-armirovannyye kompozitsionnyye materialy. Spravochnik. Moscow, Mashinostroyeniye (1987) 224 p. (in Russian) [Ю. М. Тарнопольский, И. Г. Жигун, В. А. Поляков. Пространственно-армированные композиционные материалы. Справочник. Москва, Машиностроение (1987) 224 с.].
4. S. G. Lekhnitskiy. Teoriya uprugosti anizotropnogo tela. 2nd edition. Moscow, Nauka (1977) 416 p. (in Russian) [С. Г. Лехницкий. Теория упругости анизотропного тела. Изд. 2-е. Москва, Наука (1977) 416 с.].
5. Y. M. Tarnopolskiy, T. Y. Kintsis. Metody staticheskikh ispytaniy armirovannykh plastikov. 3rd edition. Moscow, Khimiya (1981) 270 p. (in Russian) [Ю. М. Тарнопольский, Т. Я. Кинцис. Методы статических испытаний армированных пластиков. Изд. 3-е. Москва, Химия (1981) 270 с.].
6. B. A. Lyukshin. Kompozitsionnyye materialy. Tomsk, Tomsk State University of Control Systems and Radioelectronics (2012) 101 p. (in Russian) [Б. А. Люкшин. Композиционные материалы. Томск, Томский государственный университет систем управления и радиоэлектроники (2012) 101 с.].
7. D. S. Abolinsh. Mekhanika polimerov. 4, 47 (1965) (in Russian) [Д. С. Аболиньш. Механика полимеров, 4, 47 (1965).].
8. A. M. Skudra, F. Y. Bulavs, K. A. Rotsens. Polzuchest i staticheskaya ustalost armirovannykh plastikov. Riga, Zinatne (1971) 238 p. (in Russian) [А. М. Скудра, Ф. Я. Булавс, К. А. Роценс. Ползучесть и статическая усталость армированных пластиков. Рига, Зинатне (1971) 238 с.].
9. L. Brautman, R. Krok. Kompozitsionnyye materialy. Tom 5. Razrusheniye i ustalost’. Translated and edited by G. P. Cherepanova. Moscow, Mir (1978) 488 p. (in Russian) [Л. Браутман, Р. Крок. Композиционные материалы. Том 5. Разрушение и усталость. Перевод с англ. под ред. Г. П. Черепанова. Москва, Мир (1978) 488 с.].
10. G. A. Molodtsov, V. Y. Bitkin, V. F. Silyonov, F. F. Urmanov. Formostabilnyye i intellektualnyye konstruktsii iz kompozitsionnykh materialov. Moscow, Mashinostroyeniye (2000) 352 p. (in Russian) [Г. А. Молодцов, В. Е. Биткин, В. Ф. Сильонов, Ф. Ф. Урманов. Формостабильные и интеллектуальные конструкции из композиционных материалов. Москва, Машиностроение (2000) 352 с.].
11. V. S. Ivanova, I. M. Kopyev, L. R. Botvina, T. D. Shermergor. Uprochneniye metallov voloknami. Moscow, Nauka (1973) 206 p. (in Russian) [В. С. Иванова, И. М. Копьев, Л. Р. Ботвина, Т. Д. Шермергор. Упрочнение металлов волокнами. Москва, Наука (1973) 206 с.].
12. V. S. Zhernakov, Y. S. Pervushin, P. V. Solovyev. Vestnik UGATU. 21 (3), 19 (2017) (in Russian) [В. С. Жернаков, Ю. С. Первушин, П. В. Соловьев. Вестник УГАТУ. 21 (3), 19 (2017).].
13. G. A. Van Fo Fy. Osnovy teorii polimernykh tel s oriyentirovannoy strukturoy. Abstract of doc. diss. Kiev (1965) 10 p. (in Russian) [Г. А. Ван Фо Фы. Основы теории полимерных тел с ориентированной структурой. Автореферат докт. дисс. Киев (1965) 10c.].
14. V. V. Bolotin. Mekhanika polimerov. 2, 27 (1965) (in Russian) [В. В. Болотин. Механика полимеров. 2, 27 (1965).].
15. S. W. Tsai. Structural behavior of composite materials. NASA CR-71 (1964).
16. W. Voigt. Lehrbuch der Kristallphysik. Berlin-Liepzig, Teubner-Verlag (1910).
17. R. G. Hill. J. Mech. Phys. Solids. 13 (4), 213 (1965). Crossref

Similar papers

Funding

1. Russian Foundation for Basic Research - within the confines of the research project No. 17‑48‑020978 р_а
2. the Government of the Republic of Bashkortostan - within the confines of the research project No. 17‑48‑020978 р_а