IMPEDANCE SPECTROSCOPY STUDY OF THE ELECTRICAL PROPERTIES OF COMPOSITES OF СaCu3Ti4O12-CuO

N. Sekushin, N. Zhuk, L. Koksharova, V. Belyy, B. Makeev, D. Beznosikov, M. Yermolina show affiliations and emails
Received 22 May 2018; Accepted 26 August 2018;
This paper is written in Russian
Citation: N. Sekushin, N. Zhuk, L. Koksharova, V. Belyy, B. Makeev, D. Beznosikov, M. Yermolina. IMPEDANCE SPECTROSCOPY STUDY OF THE ELECTRICAL PROPERTIES OF COMPOSITES OF СaCu3Ti4O12-CuO. Lett. Mater., 2019, 9(1) 5-10
BibTex   https://doi.org/10.22226/2410-3535-2019-1-5-10

Abstract

The electrical properties of the CaCu3Ti4O12–СuO composite were studied by the method of impedance spectroscopyCalcium copper titanate СаСu3Ti4O12 attracts considerable attention of researchers due to the manifestation of extremely high values of dielectric constant (ε ~104 –105) in wide temperature (100 – 600 K) and frequency (from 20 Hz to 1 MHz) ranges. In spite of the active studies of СаСu3Ti4O12, there are unresolved questions on the influence of microstructure, the presence of copper (II) oxide layers in the intergrain space of the ceramics and on the selective influence of paramagnetic dopants on the electrophysical properties of the compound. In this connection, the electrical properties of the CaCu3Ti4O12-СuO composite were studied by the method of impedance spectroscopy. The composite was synthesized by the solid-phase method of staged calcination at 650°C, 850°C and 1050°C for 50 hours. The analysis of the impedance spectroscopy results has shown that CaCu3Ti4O12-СuO is a material with mixed electron-ion conductivity. The strong dispersion of the conductivity at room temperature was explained by the polarization of copper ions or protons, which can be present in the sample due to the dissociative adsorption of water molecules from the air. The minimum of the dispersion of the dielectric constant was found at a temperature of about 300°C, which was explained by the appearance of oxygen conductivity substantially neutralizing the cation conductivity. The simulation of electrical properties by the method of constructing equivalent circuits showed that the sample consisted of two layers. The high-resistivity layer was assigned to the crystalline part of the sample, and the low-resistivity layer to the intergranular part. The significant change in the electrical properties of the sample at the temperature of 200 – 225°C is not associated with the occurrence of a phase transition in it.

References (27)

1. H. E. Kim, S.-D. Yang, J.-W. Lee, H. M. Park, S.-I. Yoo. J. Cryst. Growth. 408, 60 (2014). Crossref
2. D. Qin, G. Liang. Alloys and Comp. 549, 11 (2013). Crossref
3. A. Deschanvres, B. Raveau, F. Tollemer. Bull. Soc. Chim. Fr., 4077 (1967).
4. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight. J. Sol. State. Chem. 151, 323 (2000). Crossref
5. S. M. Moussa, B. J. Kennedy. Mater. Res. Bull. 36, 2525 (2001). Crossref
6. W. Hao, J. Zhang. Alloys and Comp. 559, 16 (2013). Crossref
7. C.-M. Wang, K.-S. Kao, S.-Y. Lin, Y.-C. Chen, S.-C. Weng. Phys. Chem. Sol. 69, 608 (2008). Crossref
8. C. Chen, C. Wang, T. Ning, H. Lu, Y. Zhou, H. Ming, P. Wang, D. Zhang, G. Yang. Sol. St. Comm. 151, 1336 (2011). Crossref
9. J. J. Mohamed, S. D. Hutagalung, M. F. Ain, K. Deraman, Z. A. Ahmad. Mater. Lett. 61, 1835 (2007). Crossref
10. L. Li, Z. W. Wang, X. M. Chen. Mater. Res. Bull. 67, 251 (2015). Crossref
11. B. Wang, Y.-P. Pu, H.-D. Wu, K. Chen, N. Xu. Ceram. Intern. 39, 525 (2013). Crossref
12. M. V. Gorev, I. N. Flerov, A. V. Kartashev, S. Guillemet-Fritsch. Phys. Sol. St. 54, 1785 (2012). Crossref
13. Z. Yang, Y. Zhang, R. Xiong, J. S. Z. Yang, Y. Zhang, R. Xiong, J. Shi. Mater. Res. Bull. 48, 310 (2013). Crossref
14. W. Wan, C. Liu, H. Sun, Z. Luo, W.-X. Yuan, H. Wu, T. Qiu. J. Eur. Ceram. Soc. 35, 3529 (2015). Crossref
15. W. X. Yuan, S. K. Hark, W. N. Mei. J. Electrochem. 157, 117 (2010). Crossref
16. J. W. Lee, J.-H. Koh. Ceram. Intern. 41, 10442 (2015). Crossref
17. P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han. Alloys Comp. 650, 59 (2015). Crossref
18. M. Li, X. L. Chen, D. F. Zhang, Q. Liu, C. X. Li. Ceram. Intern. 41, 14854 (2015). Crossref
19. X. Ouyang, S. Huang, W. Zhang, P. Cao, Z. Huang, W. Gao. J. Sol. St. Chem. 211, 58 (2014). Crossref
20. Y. Li, P. Liang, X. Chao, Z. Yang. Ceram. Intern. 39, 7879 (2013). Crossref
21. L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju. Ceram. Intern. 41, 13486 (2015). Crossref
22. R. Löhnert, R. Schmidt, J. Töpfer. J. Electroceram. 34, 241 (2015). Crossref
23. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalij, et al, CSD-universal program package for single crystal or powder structure data treatment. Thes. Rep. XII Eur. Crystallogr. Meet. 1985. p. 155.
24. R. E. Newnham, D. P. Skinner and L. E. Cross. Mat. Res. Bull. V. 13, 525 (1978). Crossref
25. N. A. Sekushin, M. S. Koroleva, I. V. Piir. Russ. J. Electrochem. 52, 1032 (2016).
26. N. A. Sekushin, N. A. Zhuk, E. A. Belyaeva et al. Lett. on Mater. 7, 393 (2017). Crossref
27. A. G. Krasnov, I. V. Piir, M. S. Koroleva et al. Sol. St. Ion. 302, 118 (2017).

Cited by (12)

1.
N. Sekushin, L. Koksharova, N. Zhuk. Lett. Mater. 10(1), 72 (2020). Crossref
2.
N.A. Zhuk, S.V. Nekipelov, V.N. Sivkov, N.A. Sekushin, V.P. Lutoev, B.A. Makeev, A.V. Koroleva, A.V. Fedorova, L.A. Koksharova, M.M. Ignatova, R.I. Korolev. Ceramics International. 46(13), 21410 (2020). Crossref
3.
N.A. Zhuk, V.P. Lutoev, A. Lysyuk, B.A. Makeev, V.A. Belyy, S.V. Nekipelov, V.N. Sivkov, A.V. Koroleva, M.G. Krzhizhanovskaya, D.S. Beznosikov. Journal of Alloys and Compounds. 855, 157400 (2021). Crossref
4.
N. Zhuk, V. Belyy, E. Ipatova, T. Rocheva, I. Gruzdev, M. Ignatova. Lett. Mater. 11(2), 164 (2021). Crossref
5.
N.A. Zhuk, N.A. Sekushin, M.G. Krzhizhanovskaya, V.A. Belyy, R.I. Korolev. Solid State Ionics. 364, 115633 (2021). Crossref
6.
K. V. Ivanov, A. V. Noskov, O. V. Alekseeva, A. V. Agafonov. Russ. J. Inorg. Chem. 66(4), 490 (2021). Crossref
7.
N.A. Zhuk, N.?. Sekushin, M.G. Krzhizhanovskaya, V.V. Kharton. Solid State Ionics. 377, 115868 (2022). Crossref
8.
S. A. Korchagin, D. V. Terin. Tech. Phys. Lett. 47(11), 796 (2021). Crossref
9.
N.A. Zhuk, S.V. Nekipelov, V.N. Sivkov, B.A. Makeev, R.I. Korolev, V.A. Belyy, M.G. Krzhizhanovskaya, M.M. Ignatova. Materials Chemistry and Physics. 252, 123310 (2020). Crossref
10.
N.A. Zhuk, V.P. Lutoev, B.A. Makeev, S.V. Nekipelov, A.V. Koroleva, V.V. Kharton, R.I. Korolev, L.A. Koksharova. Ceramics International. 47(7), 9923 (2021). Crossref
11.
N.A. Zhuk, N.A. Sekushin, D.V. Sivkov, A.V. Popov. Ceramics International. 49(2), 2486 (2023). Crossref
12.
Nadezhda A. Zhuk, Maria G. Krzhizhanovskaya, Alexandra V. Koroleva, Nikolay A. Sekushin, Sergey V. Nekipelov, Vladislav V. Kharton, Boris A. Makeev, Vladimir P. Lutoev, Yana D. Sennikova. Inorg. Chem. 61(10), 4270 (2022). Crossref

Similar papers