Experimental study of defects influence on auxetic behavior of cellular structure with curvilinear elements

R. Goldstein, D. Lisovenko, A. Chentsov, S. Lavrentyev


Poisson’s ratio dependence on longitudinal deformations for four two-dimensional auxetic cellular samples.In this paper uniaxial tension of two-dimensional auxetic cellular constructions is studied experimentally. Various samples were made by the laser cutting method from nonauxetic polyethylene terephthalate (PET-A amorphous) planes of size 112.5×24×0.7 mm with central area of 28×24×0.7 mm. The transverse size of elements of hexagons was equal to sample thickness. The samples were subjected to monotonous uniaxial tension until the last moment when they still remained plane. Comparison of mechanical properties of the defect-free cellular constructions consisting of concave hexagons with straight elements and concave hexagons in which part of straight elements is replaced with curvilinear elements is given as a result of experimental analysis. Cellular construction with straight elements showed lower value of Poisson’s ratio in comparison with cellular construction with curvilinear elements. Influence of defects on mechanical properties of cellular construction with curvilinear elements is studied. We conclude that for the considered samples of cellular structure with curvilinear elements at uniaxial tension, loss of one horizontal element (near the center of the sample) changes effective mechanical properties much less than for the case of same structure with one vertical element being absent. As a result, tensile force - displacement diagram for four samples was calculated by the experimental data.

References (18)

L. D. Landau, E. M. Lifshitz. Theory of Elasticity. Vol. 7. Butterworth-Heinemann. (1986)
T.‑C. Lim, Auxetic Materials and Structures. Springer Singapore. (2015) 588 p. DOI: 10.1007/978‑981‑287‑275‑3
K. E. Evans, M. A. Nkansah, I. J. Hutchinson, S. C. Rogers. Nature 353 (6340), 124 (1991). DOI: 10.1016/0160–9327(91)90123‑S
K. E. Evans. Endeavour. New series 15 (4), 170 (1991). DOI: 10.1016/0160–9327(91)90123‑S
Z. A. D. Lethbridge, R. I. Walton, A. S. H. Marmier, C. W. Smith, K. E. Evans. Acta Mater. 58 (19), 6444 (2010). DOI: 10.1016/j.actamat.2010.08.006
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Mech. Solids, 45 (4), 529 (2010). DOI: 10.3103/S0025654410040047
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Phys. Status Solidi B, 250 (10), 2038 (2013). DOI: 10.1002/pssb.201384233
R. Lakes. Science 235 (4792), 1038 (1987). DOI: 10.1126/science.235.4792.1038
B. Brandel, R. S. Lakes. J. Mater. Sci. 36 (24), 5885 (2001). DOI: 10.1023/A:1012928726952
K. L. Alderson, V. R. Simkins, V. L. Coenen, P. J. Davies, A. Alderson, K. E. Evans. Phys. Status Solidi B 242 (3), 509 (2005). DOI: 10.1002/pssb.200460371
T.‑C. Lim. Phys. Status Solidi B 249 (7), 1366 (2012). DOI: 10.1002/pssb.201084220
M. Bilski, K. W. Wojciechowski. Phys. Status Solidi B 253 (7), 1318 (2016). DOI: 10.1002/pssb.201600140
R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Eur. J. Mech. A Solids 63, 122 (2017). DOI: 10.1016/j.euromechsol.2017.01.001
R. F. Almgren. J. Elasticity 15 (4), 427 (1985). DOI: 10.1007/BF00042531
D. Li, L. Dong, R. S. Lakes. Mater. Lett., 164 456 (2016). DOI: 10.1016/j.matlet.2015.11.037
D. Y. Fozdar, P. Soman, J. W. Lee, L.‑H. Han, S. Chen, Adv. Func. Mater. 21 (14), 2712 (2011). DOI: 10.1002/adfm.201002022
R. V. Goldstein, D. S. Lisovenko, A. V. Chentsov, S. Yu. Lavrentyev. Letters on Materials. 7 (2), 81-84 (2017). DOI: 10.22226/2410‑3535‑2017‑2‑81‑84
J. Blaber, B. Adair, A. Antoniou. Exp. Mech. 55 (6), 1105 (2015). DOI: 10.1007/s11340-015‑0009‑1