Variability of elastic properties of chiral monoclinic tubes under extension and torsion

M.A. Volkov, V.A. Gorodtsov, D.S. Lisovenko show affiliations and emails
Received 06 February 2019; Accepted 12 March 2019;
Citation: M.A. Volkov, V.A. Gorodtsov, D.S. Lisovenko. Variability of elastic properties of chiral monoclinic tubes under extension and torsion. Lett. Mater., 2019, 9(2) 202-206
BibTex   https://doi.org/10.22226/2410-3535-2019-2-202-206

Abstract

Angular Poisson's ratio on the inner surface of chiral tube from CsH2PO4 crystalBased on the known solutions of the problems of extension and torsion of cylindrically anisotropic chiral tubes, the analysis of variability of the Young’s modulus, Poisson’s ratios and torsional stiffness of monoclinic crystalline tubes was carried out using known experimental values of the compliance coefficients of the crystals. The extreme values of Young’s modulus and torsional stiffness were determined and their variability was studied. It was shown that chirality had a significant effect on the values of the elastic characteristics of tubes made from monoclinic crystals. Thin-walled tubes (the ratio of the external and internal radii of about one), which had a negative Poisson’s ratio, were identified. The largest negative values of Poisson’s ratio among all the analysed tubes were achieved for tubes from LaNbO4 and CsH2PO4 crystals. Due to the change in the ratio of the radii and the chirality, the Young’s modulus and the torsional stiffness of such tubes were changed in several times, and their Poisson’s ratios could change by several units. Angular Poisson’s ratio could reach the value of –6.5 on the inner surface of a tube from CsH2PO4 crystal. The LaNbO4 and CsH2PO4 crystals also had large negative values of Poisson’s ratios in the case of rectilinear anisotropy, which were significantly different from the Poisson’s ratio for isotropic materials.

References (17)

1. A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Cambridge, Cambridge Univ. Press (1927) 583 p.
2. R. Lakes. Science. 235, 1038 (1987). Crossref
3. K. E. Evans, B. D. Caddock. J. Phys. D. 22 (12), 1877 (1989). Crossref
4. P. S. Farrugia, J. N. Grima, R. Gatt. Phys. Status Solidi B. 245, 511 (2008). Crossref
5. K. W. Wojciechowski, A. C. Brańka, D. M. Heyes. Phys. Status Solidi B. 246 (9), 2063 (2009). Crossref
6. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Phys. Status Solidi B. 250 (10), 2038 (2013). Crossref
7. Z. A. D. Lethbridge, R. I. Walton, A. S. H. Marmier, C. W. Smith, K. E. Evans. Acta Mater. 58 (19), 6444 (2010). Crossref
8. M. A. Volkov. Letters on materials. 4 (3), 167 (2014) (in Russian) [М. А. Волков. Письма о материалах. 4 (3), 167 (2014).]. Crossref
9. V. I. Erofeev, I. S. Pavlov. J. Appl. Mech. Tech. Phys. 56 (6), 1015 (2015). Crossref
10. Low frequency properties of dielectric crystals. Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology Series. Ed. by D. F. Nelson Springer (1993). Crossref
11. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov. Phys. Mesomech. 17 (2), 97 (2014). Crossref
12. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Dokl. Phys. 58 (9), 400 (2013). Crossref
13. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov. Phys. Status Solidi B. 252 (7), 1580 (2015). Crossref
14. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko, M. A. Volkov. Smart Mater. Struct. 25 (5), 054006 (2016). Crossref
15. M. Rovati. Scripta. Mater. 51 (11), 1087 (2004). Crossref
16. V. Ya. Prinz, V. A. Seleznev, V. A. Samoylov, A. K. Gutakovsky. Microelectron. Eng. 30 (1), 439 (1996). Crossref
17. Y. Mei, A. A. Solovev, S. Sanchez, O. G. Schmidt. Chem. Soc. Rev. 40, 2109 (2011). Crossref

Similar papers

Funding

1. Government program - contract #AAAA-A17‑117021310373‑3