Models and some properties of Cosserat triangular lattices with chiral microstructure

A.A. Vasiliev, I.S. Pavlov show affiliations and emails
Received: 15 October 2018; Revised: 15 November 2018; Accepted: 18 November 2018
This paper is written in Russian
Citation: A.A. Vasiliev, I.S. Pavlov. Models and some properties of Cosserat triangular lattices with chiral microstructure. Lett. Mater., 2019, 9(1) 45-50
BibTex   https://doi.org/10.22226/2410-3535-2019-1-45-50

Abstract

Hexagonal cells with a symmetrical (a) and chiral (b) connection of particlesStructural, discrete and continual models of the Cosserat triangular lattice with a chiral microstructure are elaborated. The structural model is constructed on the base of particles of finite size with complex spring bonds. With symmetric diagonal bonds, one has the usual Cosserat triangular lattice, while with different diagonal bonds the Cosserat lattice with a chiral microstructure is realized. The choice of different variants enables one to compare the lattices with the ordinary and chiral microstructures and to select the specific properties caused by the chirality. For this purpose, the problems for the hexagonal cell are solved. In the first problem, the behaviour of the cell under a uniform compression (tension) of the cell is investigated. The ordinary lattice is compressed (elongated) in the direction of the force action. The particles of the chiral cell deviate from the direction of the force action during their displacements. The direction of the deviation is different for compressive (tensile) forces, i. e. the chiral lattice responds qualitatively differently to compression and tension. In the second problem, the top and bottom layers of the cell are rigidly compressed (stretched). The middle layer of the ordinary lattice is then stretched (compressed). This is a typical reaction of ordinary materials to tension (compression). The particles displace along the layer. In the chiral lattice, the middle layer is compressed under compression and is stretched under tension of the cell, i. e. chiral cell possesses the auxeticity property. In this case, the middle layer is inclined. The direction of inclination is different for compression or tension. Thus, the chirality effect is manifested. On the basis of the discrete model, equations of the continuum micropolar model are obtained. For symmetric connections, one has equations of the ordinary micropolar theory. The chiral lattice enables one to obtain equations of the chiral micropolar theory and to select the terms of the equations provided by chirality. Using the continuum model, one can find the values of the parameters, for which the second-order derivatives disappear in the rotational equations for the triangular lattice. Thus, it is possible to select a special case of parameters, for which the lattice is described by the equations of the reduced Cosserat theory.

References (24)

1. A. G. Kolpakov. J. Appl. Math. Mech. 49 (6), 739 (1985). Crossref
2. D. Prall, R. S. Lakes. Int. J. of Mech. Sci. 39, 305 (1997). Crossref
3. М. Ruzzene, F. Scarpa. Physica Status Solidi (b). 242 (3), 665 (2005). Crossref
4. R. V. Goldstein, D. S. Lisovenko, A. V. Chentsov, S. Yu. Lavrentyev. Letters on Materials. 7 (2), 81 (2017). Crossref
5. R. V. Goldstein, D. S. Lisovenko, A. V. Chentsov, S. Yu. Lavrentyev. Letters on Materials. 7 (4), 355 (2017). Crossref
6. Y. Ishibashi, M. Iwata. J. Phys. Soc. Jpn. 69 (8), 2702 (2000). Crossref
7. J. N. Grima, K. E. Evans. Journal of Materials Science Letters. 19 (17), 1563 (2000). Crossref
8. A. A. Vasiliev, S. V. Dmitriev, Y. Ishibashi, T. Shigenari. Phys. Rev. B. 65, 094101 (2002). Crossref
9. J. N. Grima, R. Gatt, P.-S. Farrugia. Physica Status Solidi (b). 245 (3), 511 (2008). Crossref
10. A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa. Wave Motion. 46, 435 (2009). Crossref
11. A. Spadoni. Application of chiral cellular materials for the design of innovative components: PhD thesis. Atlanta. (2007) 230 p.
12. A. Spadoni, M. Ruzzene. J. Mech. Phys. Solids. 60, 156 (2012). Crossref
13. X. N. Liu, G. L. Huang, G. K. Hu. J. Mech. Phys. Solids. 60, 1907 (2012). Crossref
14. A. A. Vasiliev. Letters on Materials. 3, 248 (2013). (in Russian) [А. А. Васильев. Письма о материалах. 3, 248 (2013).]. Crossref
15. A. A. Vasiliev, S. V. Dmitriev, I. S. Pavlov. Advanced materials. 12, 87 (2011). (in Russian) [А. А. Васильев, С. В. Дмитриев, И. С. Павлов. Перспективные материалы. 12, 87 (2011).].
16. A. I. Potapov, I. S. Pavlov, S. A. Lisina. Acoustical Physics. 56 (4), 588 (2010). Crossref
17. I. S. Pavlov, A. A. Vasiliev, A. V. Porubov. Journal of Sound and Vibration. 384, 163 (2016). Crossref
18. V. I. Erofeev, I. S. Pavlov, A. A. Vasiliev, A. V. Porubov. Advanced Structured Materials. 90, 101 (2018). Crossref
19. A. A. Vasiliev, A. E. Miroshnichenko, M. Ruzzene. Mechanics Research Communications. 37 (2), 225 (2010). Crossref
20. V. I. Erofeev, I. S. Pavlov. J. Appl. Mech. Tech. Phys. 56 (6), 1015 (2015). Crossref
21. R. V. Goldstein, V. A. Gorodtsov, D. S. Lisovenko. Letters on Materials. 1 (3), 127 (2011). (in Russian) [Р. В. Гольдштейн, В. А. Городцов, Д. С. Лисовенко. Письма о материалах. 1 (3), 127 (2011).]. Crossref
22. E. F. Grekova, M. A. Kulesh, G. C. Herman. Bull. Seismol. Soc. Am. 99 (2B), 1423 (2009). Crossref
23. A. V. Porubov, I. E. Berinskii. Mathematics and Mechanics of Solids. 21 (1), 94 (2016). Crossref
24. A.A. Vasiliev, A.E. Miroshnichenko. Letters on materials. 7 (4), 388 (2017). Crossref

Similar papers