Modeling of micropolar type chiral structures

Accepted  10 October 2013
This paper is written in Russian
Citation: A.A. Vasil'ev. Modeling of micropolar type chiral structures. Lett. Mater., 2013, 3(3) 248-251
BibTex   https://doi.org/10.22226/2410-3535-2013-3-248-251

Abstract

Modeling of materials with chiral microstructure is considered. A model of structural joints is introduced. This model is a generalization of the models with complex interaction of finite size particles and three-link beam con-nections. Analytical solutions for a square cell and numerical solution for the lattice with a rigid inclusion are ob-tained. The latter solution clearly demonstrates the effect of chiral microstructure. Approximating continuum micropolar type model is derived for the square chiral Cosserat lattice.

References (7)

1. Spadoni A., Ruzzene M. Elasto-static micropolarbehavior of a chiral auxetic lattice. J. Mech. Phys. Solids.(60), 156(2012).
2. Liu X.N., Huang G.L., Hu G.K. Chiral effect in plane isotropicmicropolar elasticity and its applications to chirallattices. J. Mech. Phys. Solids, 2012 (60), p. 1907-1921.
3. Vasil'ev A.A. , Dmitriev S.V., Pavlov I.S. Perspektivnuyematerialu. (12), 87 (2011) (in Russian) [Васильев А.А., Дмитриев С.В., Павлов И.С. Перспективные матери-алы, (12), 87 (2011).].
4. Suiker A.S.J., Metrikine A.V., de Borst R. Int. J. SolidsStruct.(38), 1563 (2001).
5. Pavlov I.S., Potapov A.I., Maugin G.A. Int. J. Solids Struct.(43), 6194 (2006).
6. Kim K.S., Piziali R.L. Int. J. Solids Struct. (23), 1563(1987).
7. Eringen A.C. Theory of micropolar elasticity, in: Fracture, v. 2. Ed. Liebowitz H., New York: Academic Press, 1968, p. 621-729.

Cited by (2)

1.
A. Vasiliev, I. Pavlov. LOM. 9(1), 45 (2019). Crossref
2.
C. Boni, G. Royer-Carfagni. Proc. R. Soc. A. 479(2270) (2023). Crossref

Similar papers