Numerical simulation of the inelastic behavior of a structurally graded material

A.V. Orlov, V.S. Sufiiarov ORCID logo , E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.A. Popovich, M.O. Chukovenkova, A.V. Soklakov, D.S. Mikhaluk show affiliations and emails
Received: 09 November 2018; Revised: 04 December 2018; Accepted: 17 December 2018
Citation: A.V. Orlov, V.S. Sufiiarov, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.A. Popovich, M.O. Chukovenkova, A.V. Soklakov, D.S. Mikhaluk. Numerical simulation of the inelastic behavior of a structurally graded material. Lett. Mater., 2019, 9(1) 97-102
BibTex   https://doi.org/10.22226/2410-3535-2019-1-97-102

Abstract

The authors suggested a finite-element approach to modeling the inelastic behavior of structurally graded specimens manufactured by SLM.Additive manufacturing is considered to be a very promising technology when it comes to the manufacture of metal products of a complex shape for various applications, since it provides designs with improved mechanical properties. Another advantage of modern solutions for additive manufacturing is that they help manufacturers to control the in-process structure formation of final products. Of special interest is the feasibility of simultaneously creating local regions with preferred microstructures and properties. This paper discusses the effect of the process parameters of selective laser melting (SLM) on the structure and properties of Inconel 718 specimens. The results of uniaxial tension experiments on homogeneous specimens, as well as on structurally graded specimens with equiaxed fine grains and elongated coarse grains, are presented. The authors also proposed a finite-element approach to modeling of mechanical properties. The input data include experimental data describing tensile specimens manufactured using two different process regimes of SLM to obtain different types of microstructure (equiaxed fine-grained and coarse columnar-grained), as well as experimental data on tensile tests of the composite specimen. The proposed approach defines the spatial distribution of material properties in homogeneous and structurally graded specimens. This paper presents the results of modeling based on the proposed approach for the inelastic behavior of structurally graded specimens as compared to the experimental data.

References

1. V. A. Popovich, E. V. Borisov, A. A. Popovich, V. Sh. Sufiiarov, D. V. Masaylo, L. Alzina. Materials Design. 114, 441 (2017). Crossref
2. A. A. Popovich, V. S. Sufiiarov, E. V. Borisov, I. A. Polozov, D. V. Masaylo, A. V. Grigoriev. Russian Journal of Non-Ferrous Metals. 58 (4), 389 (2017). Crossref
3. O. A. Peverini, M. Lumia, F. Calignano, D. Manfredi, G. Addamo, M. Lorusso, E. Ambrosio, G. Virone, P. Fino, R. Tascone. 2017 11th European Conference on Antennas and Propagation (EUCAP). 563 (2017). Crossref
4. V. S. Sufiiarov, A. A. Popovich, E. V. Borisov, I. A. Polozov. Tsvetnye Metally. 8, 76 (2015). Crossref
5. A. Popovich, V. Sh. Sufiiarov, E. V. Borisov, I. A. Polozov.International Journal of Bioprinting. 2 (2), 187 (2016). Crossref
6. Q. Jia, D. Gu. Optics & Laser Technology. 62, 161. (2014). Crossref
7. P. L. Blackwell. Journal of materials processing technology. 170 (1-2), 240 (2005). Crossref
8. A. A. Popovich, I. A. Polozov, E. V. Borisov. Key Engineering Materials. 651 - 653, 665. (2015). Crossref
9. V. S. Sufiiarov, A. A. Popovich, E. V. Borisov, I. A. Polozov. Tsvetnye Metally. 1, 81 (2016). Crossref
10. V. A. Popovich, E. V. Borisov, V. Heurtebise, T. Riemslag, A. A. Popovich, V. Sh. Sufiiarov. In: TMS 2018 14th Annual Meeting & Exhibition Supplemental Proceedings, ed. by The Minerals, Metals & Materials Society, Springer, Cham. (2018), 85.
11. S. Suresh. Fundamentals of functionally graded materials: processing and thermomechanical behavior of graded metals and metal-ceramic composites. London. IOM Communications Ltd. (1998) 165 р.
12. T. Hirai. Materials Science and Technology - a Comprehensive Treatment. 17B (2), 293 (1996).
13. Z. H. Jin, R. C. Batra. Journal of the Mechanics and Physics of Solids. 44 (8), 1221 (1996). Crossref
14. G. Anlas, M. H. Santare, J. Lambros. International Journal of Fracture. 104 (2), 131 (2000).
15. T. Fujimoto, N. Noda. Journal of the American Ceramic Society. 84 (7), 1480 (2001). Crossref
16. ANSYS® Mechanical APDL, Release 19, Help System, Mechanical APDL Theory Guide. ANSYS Inc.