The features of metal powders consolidation by layer-by-layer electric discharge sintering

I.A. Elkin, V.A. Volkov, K.S. Stolbov, D.A. Kolodkin, A.A. Chulkina, A.N. Bel'tyukov show affiliations and emails
Received 04 May 2018; Accepted 23 July 2018;
This paper is written in Russian
Citation: I.A. Elkin, V.A. Volkov, K.S. Stolbov, D.A. Kolodkin, A.A. Chulkina, A.N. Bel'tyukov. The features of metal powders consolidation by layer-by-layer electric discharge sintering. Lett. Mater., 2018, 8(3) 335-340
BibTex   https://doi.org/10.22226/2410-3535-2018-3-335-340

Abstract

The method of consolidation of metal powder is proposed, this method consists in applying a layer of metal powder on the surface of the detail, compressing the powder at a point between the workpiece and the electrode, and sintering at this point by electric pulse. Sequential dot by dot sintering leads to the formation of a new layer and allows to obtain bulk materials.Additive technologies (3D printing) or technologies of creating bulk materials layer by layer from powder precursors have huge prospects in the modern industry. Thanks to these technologies, it is possible to obtain products having a complex shape, as well as materials which have unique complex properties. The list of products perspectives from the point of view by 3D printing obtaining is extremely wide, therefore a continuous search of new methods and techniques for 3D printing exist. In this paper, we propose a method for obtaining bulk materials of complex shape from electroconductive powders, based on the technology of dot by dot electric-pulse sintering. This method is the layer-by-layer consolidation of powders, each layer formed as a result of successive dot by dot sintering of small portions of powder compressed between the electrode and the substrate, or between the electrode and the previous layer. It is shown that using the developed method it is possible to obtain bulk samples from powders which have different chemical composition (Cu, Ti, mechanically synthesized tin bronze), particles of various shapes (dendritic, dumbbell, stone-like), and various structural-phase states. The structural-phase states and porosity of the obtained bulk materials were studied by X-ray diffraction, electron microscopy. The heat release along the boundaries of the powders, which depends on the electrical resistivity of the material and the structural-phase transformations in the process of consolidation, affects on the sintering of the powders by the using method. The porosity of the sintered samples depends mainly on the type of powder used and decreases with decreasing size of the powders.

References (24)

1. S. Bremen, W. Meiners, A. Diatlov. Laser Technik Journal. 9(2), 33 (2012).
2. K. Zhang, W. Liu, X. Shang. Optics & Laser Technology. 39(3), 549 (2007).
3. L. E. Murr, S. M. Gaytan, D. A. Ramirez, E. Martinez, J. Hernandez, K. N. Amato, P. W. Shindo, F. R. Medina, R. B. Wicker. Journal of Materials Science & Technology. 28(1), 1 (2012).
4. L. Thijs, F. Verhaeghe, T. Craeghs. Acta Materialia. 58(9), 3303 (2010).
5. K. Puebla, L. E. Murr, S. M. Gaytan. Mater. Science and App. 3, 259 (2012).
6. T. Nakamoto, N. Shirakawa, Y. Miyata, H. Inui. J. Mater. Process. Technol. 209, 5653 (2009).
7. A. Simchi, H. Pohl. Materials Science and Engineering A. 359, 119 (2003).
8. R. Morgan, A. Papworth, C. Sutcliffe. J. of Mater. Science. 7, 3093 (2002).
9. H. Asgharzadeh, A. Simchi. Mater. Science and Eng. A. 403, 290 (2005).
10. W. Di, Y. Yongqiang, S. Xubin, C. Yonghua. Int. J. Adv. Manuf. Technol. 58, 1189 (2012).
11. H. K. Rafi, T. L. Starr, B. E. Stucker. Int. J. Adv. Manuf. Tech. 69, 1299 (2013).
12. E. G. Grigoriev, A. V. Rosliakov. Journal of materials processing technology. 191, 182 (2007).
13. A. G. Anisimov, V. I. Mali. Combustion, explosion and shock waves. 46, 237 (2010).
14. S. Kar, E. S. Sarma, V. B. Somu, N. K. Kishore, V. Srinivas. Indian journal of engineering and materials. 15, 343 (2008).
15. W. H. Lee, C. Y. Hyun. Applied surface science. 53, 4649 (2007).
16. W. H. Lee, J. W. Park, D. A. Puleo, J. Kim. Journal of materials science. 35, 593 (2000).
17. M. Alitavoli, A. Darvizeh. J. of Mater. Process. Tech. 209, 3542 (2009).
18. M. P. Malkov. Handbook of the physical and technical basics of cryogenics. Moscow, Energoatomizdat (1985) 436 p. (in Russian) [М. П. Малкова. Справочник по физико-техническим основам криогеники. Москва, Энергоатомиздат (1985) 436 с.].
19. V. E. Mikryukov. Thermal conductivity and electrical conductivity of metals and alloys. Gos. Scientific and technical publishing house for ferrous and non-ferrous metallurgy (1955) 260 p. (in Russian) [В. Е. Микрюков. Теплопроводность и электропроводность металлов и сплавов. Гос. Научно-тех. изд-во по черной и цветной металлургии (1955) 260 с.].
20. J. P. Kruth, P. Mercelis, J. Vaerenbergh. Rapid Prototyping J. 11, 36 (2005).
21. C. Rock, J. Qiu, K. Okazaki. J. of Mater. Science. 33, 241 (1998).
22. B. An, N. H. Oh, Y. W. Chun, Y. H. Kim, D. K. Kim, J. S. Park. Materials letters. 59, 2178 (2004).
23. B. E. Warren. X-ray diffraction. New-York, Dover Publ., Inc. (1990) 251 p.
24. R. K. Nandi, H. K. Kuo, W.H. Schlosberg. J. Appl. Cryst. 17, 22 (1984).

Similar papers