Determination of the shear constants of the cubic crystals

S.A. Muslov1, A Korneev2, N. Zaytseva3
1A.I. Evdokimov MSMSU
2Moscow State University of Medicine and Dentistry named A. I. Evdokimov
31. Moscow State University of Medicine and Dentistry named A. I. Evdokimov
Abstract
As a result of the research, formulas for calculating shear elastic constants of cubic crystals, based on the resonant frequency of torsional vibrations of samples c44 and C' with square and rectangular cross-section in the method of the composite piezoelectric vibrator was obtained. Despite the fact that the resonance method does not need a large single crystals, the calculation formulas for the samples most simple to manufacture prismatic either incomplete or completely unknown. For example, there is data on the calculation of the c44 and C' of the natural frequencies of torsional vibrations of the rods only circular cross-section. An exception is the ultrasonic pulse method for measuring the elastic constants, but it requires to measure single-crystal samples of sufficiently large size. The calculation is reduced to finding the proper expressions for rotating mechanical torque, which is more or less complex function of the cross-section and the elastic constants of the sample material. At the same time it takes into account the amendment to the warping of the cross-section of anisotropic samples under torsion. Then calculates the natural frequencies of torsional vibration samples of square and rectangular cross-section and the corresponding shear elastic constants. As an example, the calculation of shear considered constant C' on the basis of the pitch frequency of torsional vibrations of square cross-section sample of nickel-titanium NiTi.
Received: 04 December 2015   Accepted: 09 February 2016
Views: 107   Downloads: 24
References
1.
C.M. Zener. “Elasticity and anelasticity of metals”. Chicago, Illinois: University of Chicago Press, 1948. – 170 p.
2.
S.P. Nikanorov, B.K. Kardashev. Elasticity and dislocation inelasticity of crystals. M.: Nauka, 1985. – 254 p. (in Russian) [С.П. Никаноров, Б.К. Кардашев. Упругость и дислокационная неупругость кристаллов. М.: Наука, 1985. – 254 с.].
3.
N.H. Arutjunjan, B.L. Abramjan. Torsion of elastic bodies. M.: Fizmatgiz, 1963. – 688 p. (in Russian) [Н.Х. Арутюнян, Б.Л. Абрамян. Кручение упругих тел. М.: Физматгиз, 1963. – 688 с.].
4.
Ju.N. Rabotnov. Mechanics of deformable solids. M.: Nauka, 1988. – 712 p. (in Russian) [Ю.Н. Работнов. Механика деформируемого твердого тела. М.: Наука, 1988. – 712 с.].
5.
В. Saint-Venant. Memoire sur la torsion des prismes. Memoires presented par divers savants a l’academie des sciences. Sciences math. et phys. 14, Paris, 1856, 233-560 p.
6.
S.G. Lekhnickii. Elasticity theory of an anisotropic solid. M.: Nauka, 1977. – 416 p. [С.Г. Лехницкий. Теория упругости анизотропного тела. М.: Наука, 1977. – 416 с.].
7.
Roark’s formulas for stress and strain. Warren C. Young, Richard G. Budynas. Seventh Edition. New York: McGraw-Hill, 2002. – 852 p.
8.
Ju.I. Sirotin, M.P. Shaskol’skaja. Fundamental of crystal physics. M.: Nauka, 1975. – 640 p. [Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. М.: Наука, 1979. – 640 с.].
9.
A.V. Stepanov, I.M. Jejdus. JETP, 29(5), 669 (1955) (in Russian) [А.В. Степанов, И.М. Эйдус. ЖЭТФ, 29(5), 669 (1955)].
10.
S.A. Muslov, G.M. Stjureva, I.Ju. Sitanskaja, N.V. Zajceva. In: II International scientific-practical conference “Innovation development of the natural sciences”, St. Peterburg, 24-25 october 2014. – 8 p. (in Russian) [С.А. Муслов, Г.М. Стюрева, И.Ю. Ситанская, Н.В. Зайцева. В сб.: II Международная научно-практическая конференция “Инновационное развитие естественных наук”, Санкт-Петербург, 24-25 октября 2014 – 8 с.].
11.
S.A. Muslov, V.N. Khachin, V.P. Sivokha, V.G. Pushin. Metallofizika, 9(1), 29 (1987) (in Russian) [С.А. Муслов, В.Н. Хачин, В.П. Сивоха, В.Г. Пушин. Металлофизика, 9(1), 29 (1987)].
12.
O. Melton, K. Melton. J. Appl. Phys., 51(3) 1883 (1980).