Signs of the presence of an ordered phase in the Cu-5.9 at.% Pd alloy after its long-term annealing at a moderate temperature

О.С. Новикова ORCID logo , А.Е. Костина ORCID logo , Е.Г. Волкова, Ю.А. Саламатов, А.В. Глухов, А.Ю. Волков, В.В. Марченков, В.С. Гавико, Ю.М. Устюгов показать трудоустройства и электронную почту
Получена: 10 июля 2022; Исправлена: 20 сентября 2022; Принята: 20 сентября 2022
Эта работа написана на английском языке
Цитирование: О.С. Новикова, А.Е. Костина, Е.Г. Волкова, Ю.А. Саламатов, А.В. Глухов, А.Ю. Волков, В.В. Марченков, В.С. Гавико, Ю.М. Устюгов. Signs of the presence of an ordered phase in the Cu-5.9 at.% Pd alloy after its long-term annealing at a moderate temperature. Письма о материалах. 2023. Т.13. №1. С.3-8


We observed the ordered phase particle experimentally by the TEM method. The temperature of the order–disorder phase transition in the Cu-5.9Pd alloy was estimated as Tc ≈ 340°С.The structure and electrical properties of the Cu-5.9 at.% Pd alloy were studied after its annealing for two months at 250°C. As a result of such a long-term thermal treatment, in the XRD patterns taken from the alloy one can observe a weak superstructural (100) reflection, which seems abnormal, since the alloy can only be in the state of a disordered single-phase solid solution (as it follows from the generally accepted Cu-Pd phase diagram). Quantitative analysis of the X-ray diffraction patterns reveals the presence of two new phases with different contents of Pd. An assumption is made that L12 superstructure can be formed in the Pd-enriched phase. The specific features observed in the temperature dependence of electrical resistivity, as well as the TEM results, confirm this set-forth hypothesis of ours. Using the resistometric method, the temperature of the order-disorder phase transition in the alloy was estimated as Tc ≈ 340°С. It is concluded that the position of the A1-(A1 + L12) phase boundary in the Cu-Pd phase diagram requires more precise definition in the region of compositions on the side of the low Pd content.

Ссылки (28)

1. A. A. Popov, Yu. V. Shubin, P. E. Plyusnin et al. J. Alloys Compd. 777, 204 (2019). Crossref
2. V. M. Ievlev, K. A. Solntsev, A. I. Dontsov, A. S. Prizhimov, S. V. Gorbunov, N. R. Roshan, S. V. Kannykin. Inorg. Mater. 56, 113 (2020). Crossref
3. M. A. Habib, A. Harale, S. Paglieri et al. Energy Fuels. 35, 5558 (2021). Crossref
4. V. M. Ievlev, A. I. Dontsov, V. I. Novikov et al. Russ. Metall. (Met.). 2018, 854 (2018). Crossref
5. V. V. Krisyuk, A. E. Turgambaeva, I. V. Mirzaeva et al. Vacuum. 166, 248 (2019). Crossref
6. O. S. Novikova, K. O. Lavrinova, A. E. Kostina. Inorg. Mater. 55 (2), 116 (2019). Crossref
7. C. Chang, F. Hung, T. Lui. J. Electron. Mater. 46 (7), 4384 (2017). Crossref
8. O. S. Novikova, A. Yu. Volkov. Johns. Matthey Technol. Rev. 58 (4), 195 (2014). Crossref
9. P. R. Subramanian, D. E. Laughlin. J. of Phase Equilibria. 12 (2), 231 (1991). Crossref
10. P. Huang, S. Menon, D. de Fontaine. J. of Phase Equilibria, 12 (1), 3 (1991). Crossref
11. P. P. Fedorov, Yu. V. Shubin, E. V. Chernova. Russ. J. Inorg. Chem. 66, 891 (2021). Crossref
12. A. E. Kostina, O. S. Novikova, A. V. Glukhov et al. Phys. Met. Metallogr. 123 (1), 37 (2022). Crossref
13. I. Markovic, S. Ivanov, U. Stamenkovic et al. J. Alloys Compd. 768, 944 (2018). Crossref
14. J. M. Vitek, H. Warlimont. Metall. Mater. Trans. A. 10, 1889 (1979). Crossref
15. A. Yu. Volkov, A. E. Kostina, E. G. Volkova et al. Phys. Met. Metallogr. 118 (12), 1236 (2017). Crossref
16. G. Ceder, D. de Fontaine, H. Dreysse et al. Acta metall. mater. 38 (11), 2299 (1990). Crossref
17. M. Li, C. Guo, C. Li. CALPHAD. 32, 439 (2008). Crossref
18. S. Barthlein, E. Winning, G. Hart et al. Acta Mater. 57, 1660 (2009). Crossref
19. F. Geng, J. R. Boes, J. R. Kitchin. CALPHAD. 56, 224 (2017). Crossref
20. A. A. Popov, A. D. Varygin, P. E. Plyusnin et al. J. Alloys Compd. 891, 161974 (2022). Crossref
21. A. V. Zadesenets, Yu. V. Shubin, S. V. Korenev. Mater. Today Commun. 31, 103247 (2022). Crossref
22. A. N. Tikhonov, V. Ya. Arsenin. Solution of Ill-Posed Problems (ed. V. H. Winston). Washington, Harper and Brace (1977) 258 p.
23. E. G. Volkova, O. S. Novikova, A. Yu. Volkov. IOP Conf. Ser.: Mater. Sci. Eng. 447, 012029 (2018). Crossref
24. K. Mitsui, M. Takahashi. Scr. Mater. 38 (9), 1435 (1998). Crossref
25. K. Mitsui. Philos. mag. B. 81 (4), 433 (2001). Crossref
26. F. E. Jaumot, A. Sawatzky. Acta Metall. 4 (2), 127 (1956). Crossref
27. T. Shiraishi. J. Japan Inst. Metals. 46 (3), 245 (1982).
28. K. Hisatsune, K. Hasaka, T. Morimura et al. J. Alloys Compd. 230, 94 (1995). Crossref

Другие статьи на эту тему

Влияние предварительной деформации на фазовый состав и прочностные свойства аустенитной нержавеющей стали, формируемые при ионно-плазменной обработке
В.А. Москвина, Е.Г. Астафурова, К.Н. Рамазанов, Г.Г. Майер, С.В. Астафуров, М.Ю. Панченко, Е.В. Мельников, Ю.П. Миронов, Е.А. Загибалова

Финансирование на английском языке

1. M. N. Mikheev Institute of Metal Physics - This work was carried out within the state assignment themes “Pressure” 122021000032-5.