Влияние предварительной деформации на фазовый состав и прочностные свойства аустенитной нержавеющей стали, формируемые при ионно-плазменной обработке

В.А. Москвина, Е.Г. Астафурова, К.Н. Рамазанов, Г.Г. Майер, С.В. Астафуров, М.Ю. Панченко, Е.В. Мельников, Ю.П. Миронов, Е.А. Загибалова показать трудоустройства и электронную почту
Получена: 17 мая 2019; Исправлена: 31 мая 2019; Принята: 09 июня 2019
Эта работа написана на английском языке
Цитирование: В.А. Москвина, Е.Г. Астафурова, К.Н. Рамазанов, Г.Г. Майер, С.В. Астафуров, М.Ю. Панченко, Е.В. Мельников, Ю.П. Миронов, Е.А. Загибалова. Влияние предварительной деформации на фазовый состав и прочностные свойства аустенитной нержавеющей стали, формируемые при ионно-плазменной обработке. Письма о материалах. 2019. Т.9. №4. С.377-381
BibTex   https://doi.org/10.22226/2410-3535-2019-4-377-381

Аннотация

Surface hardening of specimens of 316L-type austenitic stainless steel during ion-plasma treatment strongly depends on its initial microstructure.The effect of pre-deformation by cold-rolling on phase composition and nanohardness of a surface layer and resultant tensile properties of Fe-17Cr-13Ni-2.7Mo-1.7Mn-0.6Si-0.01C (wt.%, 316L-type) austenitic stainless steel subjected to an ion-plasma treatment was investigated. The ion-plasma treatment facilitates a formation of inhomogeneous surface layers of ≈18 – 25 μm in thickness in steel specimens. Independently of type of initial microstructure, coarse-grained or highly defective deformation-associated one, the surface layers of the steel specimens undergo similar phase transformations under ion-plasma treatment. Solid-solution strengthening of austenite (Fe-γN, C) and dispersion hardening by different phases (Fe4(N, C), Cr(N, C), Fe- αN, C) both increase surface nanohardness and tensile strength characteristics of austenitic stainless steel. X-ray diffraction data show that morphology and distribution of dispersed phases in the surface layers could be strongly dependent on prior microstructure of the steel. In ion-plasma treatment, specimens with coarse-grained structure are prone to accumulate and save interstitials in austenite (solid-solution). After surface treatment, higher strength properties (nanohardness) of the composition layer and more extended diffusion zone both provide higher tensile strength characteristics of pre-deformed specimens as compared to coarse-grained one. The experimental results clearly show that surface hardening of specimens of 316L-type austenitic stainless steel during ion-plasma treatment strongly depends on its initial microstructure.

Ссылки (23)

1. K. H. Lo, C. H. Shek, J. K. L. Lai. Mat. Sci. and Eng.: R: Reports. 65, 39 (2009). Crossref
2. E. Menthe, K. T. Rie. Surf. Coat. Technol. 116 -119, 199 (1999). Crossref
3. Y. Li, L. Wang, J. Xu, D. Zhang. Surf. Coat. Technol. 206 (8-9), 2430 (2012). Crossref
4. Y. Li, S. Zhang, Y. He, L. Zhang, L. Wang. Mater. Des. 64, 527 (2014). Crossref
5. R. R. M. de Sousa, F. O. de Araujo, L. C. Gontijo, J. A. P. da Costa, I. O. Nascimento, C. Alves Jr. Materials Research. 17 (2), 427 (2013). Crossref
6. W. Liang. Appl. Surf. Sci. 211 (1-4), 308 (2003). Crossref
7. D. Manova, S. Mandl, H. Neumann, B. Rauschenbach. Surf. Coat. Technol. 201 (15), 6686 (2007). Crossref
8. F. Borgioli, E. Galvanetto, T. Bacci. Vacuum. 127, 51 (2016). Crossref
9. F. Ernst, Y. Cao, G. M. Michal, A. H. Heuer. Acta Mater. 55 (6), 1895 (2007). Crossref
10. L. Jiang, H. Luo, C. Zhao. Surf. Eng. 34 (3), 205 (2018). Crossref
11. T. L. Christiansen, T. S. Hummelshoj, M. A. J. Somers. Surf. Eng. 26 (4), 242 (2010). Crossref
12. W. P. Tong, C. Z. Liu, W. Wang, N. R. Tao, Z. B. Wang, L. Zuo, J. C. He. Scripta Mater. 57 (6), 533 (2007). Crossref
13. M. Laleh, F. Kargar, M. Velashjerdi. J. Mater. Eng. Perform. 22 (5), 1304 (2012). Crossref
14. V. V. Budilov, R. D. Agzamov, K. N. Ramazanov. Met. Sci. Heat Treat. 49 (7-8), 358 (2007). Crossref
15. D. B. Williams, C. B. Carter. Transmission Electron Microscopy. USA, Springer (2009) 775 p. Crossref
16. A. Taylor. X-ray metallography. Moscow, Metallurgy (1965) 663 p.
17. J. Gubicza. X-ray Line Profile Analysis in Materials Science. Hershey, PA, IGI Global IGI Global (2014) 359 p. Crossref
18. G. K. Williamson, R. E. Smallman. Phil. Mag. 1 (1), 34 (1956). Crossref
19. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan. Electron Microscopy of Thin Crystals. Huntington, New York, Krieger (1977) 362 p.
20. S. J. Lee, Y. K. Lee. Scripta Mater. 52 (10), 973 (2005). Crossref
21. D. Jiao, C. P. Luo, J. Liu. Scripta Mater. 56 (7), 613 (2007). Crossref
22. V. Moskvina, E. Astafurova, G. Maier, K. Ramazanov, S. Astafurov, E. Melnikov. Defect and Diffusion Forum. 385, 267 (2018). Crossref
23. V. Moskvina, E. Astafurova, G. Maier, K. Ramazanov, S. Astafurov, E. Melnikov, Yu. P. Mironov. Materials Characterization. 153, 372 (2019). Crossref

Другие статьи на эту тему

Финансирование

1. Программа фундаментальных исследований государственных академий наук на 2013-2020 годы - номер проекта III.23.2.7