Низкотемпературная интенсивная пластическая деформация магния

Д.А. Комкова, О.В. Антонова, В.Н. Петрова, А.Ю. Волков показать трудоустройства и электронную почту
Получена: 15 июля 2019; Исправлена: 19 октября 2019; Принята: 22 октября 2019
Эта работа написана на английском языке
Цитирование: Д.А. Комкова, О.В. Антонова, В.Н. Петрова, А.Ю. Волков. Низкотемпературная интенсивная пластическая деформация магния. Письма о материалах. 2019. Т.9. №4. С.451-455
BibTex   https://doi.org/10.22226/2410-3535-2019-4-451-455

Аннотация

The paper presents the results of structure and texture investigation of thin magnesium foils obtained by rolling at low temperatures.In this paper, the microstructure and texture of pure magnesium after rolling at low temperatures have been investigated. Pre-deformed magnesium in the form of a plate with the thickness of 1 mm was rolled at room and cryogenic temperatures down to foils with 150 µm thickness. The true strain was ε ~1.9. Methods of X-ray diffraction, scanning electron microscopy with electron backscattering diffraction analyses (EBSD-analysis) and transmission electron microscopy have been used to investigate the structure and texture of the magnesium foils. In the initial state, the plate has a weakened basal texture and fine-grained structure. It was shown that the basal texture (0001) became stronger during rolling regardless of the deformation temperature. In all cases, the structure was heterogenic and consisted of large recrystallized grains with preferred basal orientation and smaller (sub)grains. However, it was noted that the room-temperature rolling led to an increase of the fraction of large grains, and lower deformation temperature prevents an active grain growth. The change of the number fraction of low-angle and high-angle boundaries could point on different lead mechanisms during deformation. At room-temperature rolling, there is the predominance of slip processes and dynamic recrystallization. As for at cryo-deformation, the twinning is more active and the dislocation slip could be suppressed for a while.

Ссылки (24)

1. B. L. Mordike, T. Ebert. Mater. Sci. Eng. A. 302, 37 (2001). Crossref
2. E. Doege, K. Droder. J. Mat. Proc. Tech. 115, 14 (2001). Crossref
3. B. Ch. Suh, M. Sh. Shim, K. S. Shin, N. J. Kim. Scr. Mat. 85, 1 (2014). Crossref
4. G. V. Raynor. The Physical Metallurgy of Magnesium and its Alloys. London-NewYork, Pergamon Press (1959) 531 p.
5. M. H. Yoo. Met. Trans. A. 12 (3), 409 (1981). Crossref
6. K. K. Alaneme, E. A. Okotete, J. Magnes. Alloys. 5 (4), 460 (2017). Crossref
7. T. G. Langdon. Acta Mater. 61 (19), 7035 (2013). Crossref
8. Magnesium Technology (ed. by V. V. Joshi, J. B. Jordon, D. Orlov, N. R. Neelameggham). Cham, Springer (2019) 370 p. Crossref
9. R. B. Figueiredo, T. G. Langdon. J. Mat. Sci. 43 (23-24), 7366 (2008). Crossref
10. R. N. Harsha, V. M. Kulkarni, B. Satish Babu. Mat. Today: Proc. 5 (10), 22340 (2018). Crossref
11. O. V. Antonova, A. Yu. Volkov, B. I. Kamenetskii, D. A. Komkova. Mat. Sci. Eng. A. 651, 8 (2016). Crossref
12. A. Yu. Volkov, O. V. Antonova, B. I. Kamenetskii, I. V. Klyukin, D. A. Komkova, B. D. Antonov. Phys. Met. Metallogr. 117 (5), 518 (2016). Crossref
13. O. V. Antonova, A. Yu. Volkov, D. A. Komkova, B. D. Antonov. Mat. Sci. Eng. A. 706, 319 (2017). Crossref
14. D. A. Komkova, O. V. Antonova, A. Yu. Volkov. Phys. Met. Metallogr. 119 (11), 1120 (2018). Crossref
15. M. D. Nave, M. R. Barnett. Scripta Materialia. 51 (9), 881 (2004). Crossref
16. F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Oxford, Elsevier (2004) 658 p. Crossref
17. S. Suwas, G. Gottstein, R. Kumar. Mater. Sci. Eng. A. 471, 1 (2007). Crossref
18. Zh. Zeng, J. F. Nie, Sh. W. Xu, Ch. Davis, N. Birbilis. Nature communications. 8, 1 (2017). Crossref
19. S. E. Ion, F. J. Humphreys, S. H. White. Acta. Met. 30 (10), 1909 (1982). Crossref
20. I. A. Ovid’ko. Materials Physics and Mechanics. 8, 174 (2009).
21. M. A. Meyers, O. Vöhringer, V. A. Lubarda. Acta. mater. 49, 4025 (2001). Crossref
22. S. V. Zherebtsov, G. S. Dyakonov, A. A. Salem, S. P. Malysheva, G. A. Salishchev, S. L. Semiatin. Mater. Sci. Eng. A. 528 (9), 3474 (2011). Crossref
23. G. S. Dyakonov, S. V. Zherebtsov, M. V. Klimova, G. A. Salishchev. Phys. Met. Metallogr. 116 (2), 182 (2015). Crossref
24. Q. Yu, Zh. Shan, J. Li, X. Huang, L. Xiao, J. Sun, E. Ma. Nature. 463, 335 (2010). Crossref

Другие статьи на эту тему

Финансирование

1. Государственное задание - (theme: Pressure no. АААА-А18-118020190104-3)
2. Российский фонд фундаментальных исследований - Проект №18-33-00474