Developments in superplasticity over the last three decades with emphasis on research in Ufa

Принята: 09 октября 2018
Эта работа написана на английском языке
Цитирование: T.G. Langdon. Developments in superplasticity over the last three decades with emphasis on research in Ufa. Письма о материалах. 2018. Т.8. №4s. С.506-509
BibTex   https://doi.org/10.22226/2410-3535-2018-4-506-509

Аннотация на русском языке

The IPSM building in Ufa used for research on all aspects of superplastic flow and superplastic formingSuperplasticity refers to the ability of some materials to exhibit exceptionally high elongations when pulled in tension. This phenomenon forms the background for the use of superplastic forming in which complex curved parts may be fabricated through relatively simple forming operations. At the present time, this type of forming is important in manufacturing products for a wide range of industrial applications. An important development in this field occurred in 1985 when Professor Oscar Kaibyshev established the Institute of Problems of Superplasticity of Metals (IPSM) under the auspices of the Russian Academy of Sci-ences in Ufa in the Ural Mountains region of Russia. At that time, this institute was, and remains to this day, the first and only institute devoted exclusively to the development of research in superplasticity. In practice, the establishment of this institute came at an appropriate time because it marked the beginning of the availability of new and sophisticated tools which permitted detailed microstructural observations which surpassed the techniques available in earlier decades. In this special issue of the journal devoted to “Superplasticity and Related Phenomena” it is appropriate, therefore, to examine some of the developments in superplasticity that have occurred over the last three decades with an emphasis on research conducted by scientists from Ufa.

Ссылки

1. T. G. Langdon. J. Mater. Sci. 44, 5998 (2009).
2. C. E. Pearson. J. Inst. Metals. 54, 111 (1934).
3. E. E. Underwood. JOM. 14(12), 914 (1962).
4. A. J. Barnes. J. Mater. Eng. Perform. 16, 440 (2007).
5. M. M. I. Ahmed, T. G. Langdon. Metall. Trans. A. 8A, 1832 (1977).
6. T. G. Langdon. Mater. Sci. Forum. 838 - 839, 1 (2016).
7. Y. Ma, T. G. Langdon. Metall. Mater. Trans. A. 25A, 2309 (1994).
8. T. G. Langdon. Defect Diffusion Forum. 385, 3 (2018).
9. R. Z. Valiev, V. Yu. Gertsman, O. A. Kaibyshev. Phys. Status Solidi A. 97, 11 (1986).
10. T. G. Langdon. Metall. Trans. 13A, 689 (1982).
11. R. Z. Valiev, O. A. Kaibyshev, R. I. Kuznetsov, R. S. Musalimov, N. K. Tsenev. Dokl. Akad. Nauk SSSR 301, 864 (1988).
12. T. G. Langdon. Mater. Sci. Eng. A503, 6 (2009).
13. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov. Prog. Mater. Sci. 45, 103 (2000).
14. R. Z. Valiev, T. G. Langdon. Prog. Mater. Sci. 51, 881 (2006).
15. A. P. Zhilyaev, T. G. Langdon. Prog. Mater. Sci. 53, 893 (2008).
16. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. T. Zhu. JOM. 58(4), 33 (2006).
17. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, Y. Zhu. JOM. 58, 1216 (2016).
18. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, T. G. Langdon. Scripta Mater. 37, 1945 (1997).
19. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon. Scripta Mater. 35, 143 (1996).
20. T. G. Langdon. Metal Sci. 16, 175 (1982).
21. T. G. Langdon. Mater. Sci. Eng. A. 174, 225 (1994).
22. T. G. Langdon. Acta Metall. Mater. 42, 2437 (1994).
23. R. Z. Valiev, T. G. Langdon. Acta Metall. Mater. 41, 949 (1993).