Structure control of 316L stainless steel through an additive manufacturing

Y.O. Kuzminova, D.G. Firsov, S.D. Konev, A.A. Dudin, S.A. Dagesyan, I.S. Akhatov, S.A. Evlashin показать трудоустройства и электронную почту
Получена: 31 августа 2019; Исправлена: 10 октября 2019; Принята: 10 октября 2019
Эта работа написана на английском языке
Цитирование: Y.O. Kuzminova, D.G. Firsov, S.D. Konev, A.A. Dudin, S.A. Dagesyan, I.S. Akhatov, S.A. Evlashin. Structure control of 316L stainless steel through an additive manufacturing. Письма о материалах. 2019. Т.9. №4s. С.551-555


The work represents the results of mechanical and structural properties of 316L stainless steel according to variable 3D printing parameters.The 3D printing process is a recent technique, which allows one to produce parts of complex geometry. The influence of printing parameters on the mechanical and structural properties of many materials has been extensively studied. However, despite the considerable amount of research, the task of comparing the results of different scientific groups is complicated. Each research group performs the investigation with different printing conditions. A lot of works contain not full information about the printing process parameters which were applied. This paper presents the results on the mechanical and structural properties of 316L stainless steel according to variable printing parameters, such as laser density energy, scan strategy, and build direction at other fixed conditions. The results reveal a parabolic dependency between the mechanical properties and the laser density energy. The laser density energy of 161 J/mm3 leads to the best mechanical characteristics (yield strength of 530 MPa, ultimate strength of 580 MPa, and ductility of 63.2%). Scan strategy does not influence the mechanical properties of the samples printed in the vertical direction. At the same time, the strong scan strategy effect is observed for the samples printed in horizontal direction. The difference in the ultimate strength between the vertically and horizontally printed samples reaches up to 70 MPa.

Ссылки (21)

1. J. O. Milewski. Springer series in materials science. Vol. 258. Cham, Springer (2017) 343 p. Crossref
2. W. E. Frazier. J. Mater. Eng. Perform. 23, 1917 (2014). Crossref
3. Z. Wally, W. van Grunsven, F. Claeyssens, R. Goodall, G. Reilly. Metals. 6(5), 97 (2016). Crossref
4. H. Ali, H. Ghadbeigi, K. Mumtaz. Mater. Sci. Eng. A. 712, 175 (2018). Crossref
5. C. Pauzon, E. Hryha, P. Forêt, L. Nyborg. Mater. Des. 179, 107873 (2019). Crossref
6. A. Bin Anwar, Q.-C. Pham. J. Mater. Process. Technol. 240, 388 (2017). Crossref
7. K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng. Mater. Des. 50, 581 (2013). Crossref
8. I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, A. Esnaola. Int. J. Adv. Manuf. Technol. 51, 639 (2010). Crossref
9. A. Simchi. Mater. Sci. Eng. A. 428, 148 (2006). Crossref
10. A. Röttger, K. Geenen, M. Windmann, F. Binner, W. Theisen. Mater. Sci. Eng. A. 678, 365 (2016). Crossref
11. E. Liverani, S. Toschi, L. Ceschini, A. Fortunato. J. Mater. Process. Technol. 249, 255 (2017). Crossref
12. J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown, J. Sienz. Int. J. Adv. Manuf. Technol. 76 (5 - 8), 869 (2015). Crossref
13. L. Hao, S. Dadbakhsh, O. Seaman, M. Felstead. J. Mater. Process. Technol. 209, 5793 (2009). Crossref
14. P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah, A. J. Moore. Int. J. Mach. Tools Manuf. 130 - 131, 65 (2018). Crossref
15. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang. Prog. Mater. Sci. 92, 112 (2018). Crossref
16. S. L. Campanelli, N. Contuzzi, A. Angelastro, A. D. Ludovico. Capabilities and Performances of the Selective Laser Melting Process. In: New Trends in Technologies: Devices, Computer, Communication and Industrial Systems. (Ed. by M. J. Er). Rijeka, IntechOpen. (2010) pp. 233 - 252. Crossref
17. M. A. Taha, A. F. Yousef, K. A. Gany, H. A. Sabour. Materwiss. Werksttech. 43, 913 (2012). Crossref
18. R. Li, P. Niu, T. Yuan, P. Cao, C. Chen, K. Zhou. J. Alloys Compd. 746, 125 (2018). Crossref
19. A. A. Martin, N. P. Calta, S. A. Khairallah, J. Wang, P. J. Depond, A. Y. Fong, V. Thampy, G. M. Guss, A. M. Kiss, K. H. Stone, C. J. Tassone, J. Nelson Weker, M. F. Toney, T. van Buuren, M. J. Matthews. Nat. Commun. 10, 1 (2019). Crossref
20. H. Chae, E.-W. Huang, J. Jain, H. Wang, W. Woo, S.-W. Chen, S. Harjo, T. Kawasaki, S. Y. Lee. Mater. Sci. Eng. A. 762, 138065 (2019). Crossref
21. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann. Acta Mater. 117, 371 (2016). Crossref

Другие статьи на эту тему

Влияние предварительной деформации на фазовый состав и прочностные свойства аустенитной нержавеющей стали, формируемые при ионно-плазменной обработке
В.А. Москвина, Е.Г. Астафурова, К.Н. Рамазанов, Г.Г. Майер, С.В. Астафуров, М.Ю. Панченко, Е.В. Мельников, Ю.П. Миронов, Е.А. Загибалова