Structure evolution in ultrafine-grained nickel induced by ultrasonic welding

E.R. Shayakhmetova ORCID logo , M.A. Murzinova, A.A. Mukhametgalina, A.A. Nazarov показать трудоустройства и электронную почту
Получена 22 января 2024; Принята 10 марта 2024;
Эта работа написана на английском языке
Цитирование: E.R. Shayakhmetova, M.A. Murzinova, A.A. Mukhametgalina, A.A. Nazarov. Structure evolution in ultrafine-grained nickel induced by ultrasonic welding. Письма о материалах. 2024. Т.14. №1. С.91-96
BibTex   https://doi.org/10.48612/letters/2024-1-91-96

Аннотация

Disk-shaped nickel plates processed by high pressure torsion were successfully joined by ultrasonic welding.  Welding resulted in the grain growth which is uneven along the cross-sectional height of the welded specimen. The specimens showed a gradient microstructure with a grain size ranging from 3 μm in the lower plate to 6 μm in the upper one, along with a developed substructure, after the process of USW.Interest in materials with ultrafine-grained and nanocrystalline structures is explained by their unique strength properties. At the same time, the manufacture of complex parts from such materials is accompanied by grain growth, since the structure is not stable at heating. This study presents the results of structure examination of ultrasonically welded nickel plates with an initial grain size of 0.3 μm processed by high-pressure torsion. The analysis revealed that a gradient microstructure was formed in the samples produced by ultrasonic welding (USW). The grain size increased to the values ranging from 3 µm in the bottom plate up to 6 µm in the top one. The growth of grains was accompanied by the formation of a substructure. In the bulk of the welded plates, partially axial microtexture similar to the texture of warm-rolled nickel was formed and the directions <111> representing the rotation axes of grains were perpendicular to the joining surface. During USW, two competing processes, namely, the grain growth due to heating and the formation of new recrystallized grains 1.7 µm in size due to dynamic recrystallization occurred in a narrow layer with the thickness of about 10 µm along the joint zone.

Ссылки (35)

2. M. A. Meyers, A. Mishra, D. J. Benson. Prog. Mater Sci. 51, 427 (2006).
3. H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, K. Nogi. Mater. Trans. 47, 239 (2006).
4. E. V. Valitova, R. Y. Lutfullin, M. K. Mukhametrakhimov, V. A. Valitov, A. K. Akhunova, S. V. Dmitriev. Lett. Mater. 4 (4), 291 (2014).
6. Z. Ni, B. Li, Y. Liu, L. Huang, A. Nazarov, X. Wang, Z. Yuan, F. Ye. Sci. Technol. Weld. Join. 28, 1 (2023).
7. M. P. Matheny, K. F. Graff. In: Power Ultrasonics. Applications of High-Intensity Ultrasound (ed. by J. A. Gallego-Juarez, K. F. Graff). Cambridge, Woodhead Publishing (2015) pp. 259 - 293.
8. D. Bakavos, P. B. Prangnell. Mater. Sci. Eng. A. 527, 6320 (2010).
9. F. Haddadi, D. Tsivoulas. Mater. Characte. 118, 340 (2016).
10. A. P. Zhilyaev, G. V. Nurislamova, B.-K. Kim, M. D. Baró, J. A. Szpunar, T. G. Langdon. Acta Mater. 51, 753 (2003).
11. A. P. Zhilyaev, J. Gubicza, G. V. Nurislamova, Á. Révész, S. Suriñach, M. D. Baró, T. Ungár. Phys. Stat. Sol. 198, 263 (2003).
12. E. R. Shayakhmetova, M. A. Murzinova, V. S. Zadorozhniy, A. A. Nazarov. Metals. 12, 1865 (2022).
13. F. J. Humphreys. Scripta Mater. 51, 771 (2004).
14. A. A. Samigullina, A. A. Mukhametgalina, S. N. Sergeyev, A. P. Zhilyaev, A. A. Nazarov et al. Ultrasonics. 82, 313 (2018).
15. S. Li, I. J. Beyerlein, M. A. M. Bourke. Mater. Sci. Eng. A. 394, 66 (2005).
16. A. Zhilyaev, M. Baró, T. Langdon, T. Mcnelley. Rev. Adv. Mater. Sci. 7, 41 (2004).
17. M. A. Murzinova, E. R. Shayakhmetova, A. A. Mukhametgalina, A. A. Sarkeeva, A. A. Nazarov. Metals. 13, 1661 (2023).
18. Z. Ni, Z. Gao. STWJ. 28, 865 (2023).
19. Z. Su, Z. Zhu, Y. Zhang, H. Zhang, Q. Xiao. Metals. 11, 61 (2021).
20. E. R. Shayakhmetova, A. A. Mukhametgalina, М. A. Murzinova, A. A. Nazarov. Mater. Phys. Mechan. 47, 569 (2021).
21. S. M. A. K. Mohammed, S. S. Dash, X. Q. Jiang, D. Y. Li, D. L. Chen. Mater. Sci. Eng. A. 756, 417 (2019).
23. E. R. Shayakhmetova, A. A. Mukhametgalina, M. A. Murzinova, A. A. Nazarov. Lett. Mater. 13 (4s), 456 (2023).
24. Z. L. Ni, Y. Liu, Y. H. Wang, B. Y. He. Mater. Sci. Eng. A. 833, 142536 (2022).
25. D. Zhao, C. Jiang, K. Zhao. J. Mater. Res. Technol. 23, 1273 (2023).
26. M. Shakil, N. H. Tariq, M. Ahmad, M. A. Choudhary, J. I. Akhter, S. S. Babu. Mater. Des. 55, 263 (2014).
27. K. K. Chen, Y. S. Zhang, H. Z. Wang. Sci. Technol. Weld. Join. 22, 208 (2016).
28. Z. Ma, Y. Zhang. J. Manuf. Process. 54, 138 (2020).
30. P. Jedrasiak, H. R. Shercliff, Y. C. Chen, L. Wang, P. Prangnell, J. Robson. JMEPEG. 24, 799 (2015).
31. P. Ghosh, O. Renk, R. Pippan. Mater. Sci. Eng. A. 684, 101 (2017).
32. Ya. D. Vishnyakov, A. A. Babareko, S. A. Vladimirov, I. V. Egiz. In: Theory of Texture Formation in Metals and Alloys (ed. by N. V. Ageev). Moscow, Nauka (1979) pp. 280 - 283. (in Russian) [Я. Д. Вишняков, А. А. Бабарэко, С. А. Владимиров, И. В. Эгиз. В кн.: Теория образования текстур в металлах и сплавах (под ред. Н. В. Агеева). Москва, Наука (1979) с. 280 - 283.].
33. L. L. Silin, G. F. Balandin, M. G. Kogan. In: Ultrasonic Welding: Joining of Metals in Solid State and Improvement of Quality of Welds (ed. by N. N. Rykalin). Moscow, Mashgiz (1962) pp. 51 - 64. (in Russian) [Л. Л. Силин, Г. Ф. Баландин, М. Г. Коган. В кн.: Ультразвуковая сварка: Соединение металлов в твердом состоянии и улучшение качества сварных швов (под ред. Н. Н. Рыкалина). Москва, Машгиз (1962) с. 51 - 64.].
34. H. Huang, J. Chen, Y. C. Lim, X. Hu, J. Cheng, Z. Feng, X. Sun. J. Mater. Proces. Tech. 272, 125 (2019).
35. S. Elangovan, S. Semeer, K. Prakasan. J. Mater. Proces. Tech. 209, 1143 (2009).

Другие статьи на эту тему

Финансирование на английском языке

1. Grant of the Republic of Bashkortostan for young scientists -
2. state assignment of IMSP RAS - Registration number 124022900006-2